Step |
Hyp |
Ref |
Expression |
1 |
|
ralsng.1 |
|- ( x = A -> ( ph <-> ps ) ) |
2 |
|
df-ral |
|- ( A. x e. { A } ph <-> A. x ( x e. { A } -> ph ) ) |
3 |
|
velsn |
|- ( x e. { A } <-> x = A ) |
4 |
3
|
imbi1i |
|- ( ( x e. { A } -> ph ) <-> ( x = A -> ph ) ) |
5 |
4
|
albii |
|- ( A. x ( x e. { A } -> ph ) <-> A. x ( x = A -> ph ) ) |
6 |
2 5
|
bitri |
|- ( A. x e. { A } ph <-> A. x ( x = A -> ph ) ) |
7 |
|
elisset |
|- ( A e. V -> E. x x = A ) |
8 |
1
|
pm5.74i |
|- ( ( x = A -> ph ) <-> ( x = A -> ps ) ) |
9 |
8
|
albii |
|- ( A. x ( x = A -> ph ) <-> A. x ( x = A -> ps ) ) |
10 |
9
|
a1i |
|- ( E. x x = A -> ( A. x ( x = A -> ph ) <-> A. x ( x = A -> ps ) ) ) |
11 |
|
19.23v |
|- ( A. x ( x = A -> ps ) <-> ( E. x x = A -> ps ) ) |
12 |
11
|
a1i |
|- ( E. x x = A -> ( A. x ( x = A -> ps ) <-> ( E. x x = A -> ps ) ) ) |
13 |
|
pm5.5 |
|- ( E. x x = A -> ( ( E. x x = A -> ps ) <-> ps ) ) |
14 |
10 12 13
|
3bitrd |
|- ( E. x x = A -> ( A. x ( x = A -> ph ) <-> ps ) ) |
15 |
7 14
|
syl |
|- ( A e. V -> ( A. x ( x = A -> ph ) <-> ps ) ) |
16 |
6 15
|
bitrid |
|- ( A e. V -> ( A. x e. { A } ph <-> ps ) ) |