Metamath Proof Explorer


Theorem s1s3

Description: Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s1s3 ⟨“ABCD”⟩=⟨“A”⟩++⟨“BCD”⟩

Proof

Step Hyp Ref Expression
1 df-s3 ⟨“BCD”⟩=⟨“BC”⟩++⟨“D”⟩
2 s1cli ⟨“A”⟩WordV
3 s2cli ⟨“BC”⟩WordV
4 df-s4 ⟨“ABCD”⟩=⟨“ABC”⟩++⟨“D”⟩
5 s1s2 ⟨“ABC”⟩=⟨“A”⟩++⟨“BC”⟩
6 1 2 3 4 5 cats1cat ⟨“ABCD”⟩=⟨“A”⟩++⟨“BCD”⟩