Metamath Proof Explorer


Theorem s2s5

Description: Concatenation of fixed length strings. (Contributed by AV, 1-Mar-2021)

Ref Expression
Assertion s2s5 ⟨“ABCDEFG”⟩=⟨“AB”⟩++⟨“CDEFG”⟩

Proof

Step Hyp Ref Expression
1 s1s2 ⟨“ABC”⟩=⟨“A”⟩++⟨“BC”⟩
2 1 eqcomi ⟨“A”⟩++⟨“BC”⟩=⟨“ABC”⟩
3 2 oveq1i ⟨“A”⟩++⟨“BC”⟩++⟨“DEFG”⟩=⟨“ABC”⟩++⟨“DEFG”⟩
4 s1cli ⟨“A”⟩WordV
5 s4cli ⟨“DEFG”⟩WordV
6 df-s2 ⟨“AB”⟩=⟨“A”⟩++⟨“B”⟩
7 s1s4 ⟨“CDEFG”⟩=⟨“C”⟩++⟨“DEFG”⟩
8 4 5 6 7 cats2cat ⟨“AB”⟩++⟨“CDEFG”⟩=⟨“A”⟩++⟨“BC”⟩++⟨“DEFG”⟩
9 s3s4 ⟨“ABCDEFG”⟩=⟨“ABC”⟩++⟨“DEFG”⟩
10 3 8 9 3eqtr4ri ⟨“ABCDEFG”⟩=⟨“AB”⟩++⟨“CDEFG”⟩