Metamath Proof Explorer


Theorem s3s4

Description: Concatenation of fixed length strings. (Contributed by AV, 1-Mar-2021)

Ref Expression
Assertion s3s4 ⟨“ABCDEFG”⟩=⟨“ABC”⟩++⟨“DEFG”⟩

Proof

Step Hyp Ref Expression
1 s2s2 ⟨“ABCD”⟩=⟨“AB”⟩++⟨“CD”⟩
2 1 eqcomi ⟨“AB”⟩++⟨“CD”⟩=⟨“ABCD”⟩
3 2 oveq1i ⟨“AB”⟩++⟨“CD”⟩++⟨“EFG”⟩=⟨“ABCD”⟩++⟨“EFG”⟩
4 s2cli ⟨“AB”⟩WordV
5 s3cli ⟨“EFG”⟩WordV
6 df-s3 ⟨“ABC”⟩=⟨“AB”⟩++⟨“C”⟩
7 s1s3 ⟨“DEFG”⟩=⟨“D”⟩++⟨“EFG”⟩
8 4 5 6 7 cats2cat ⟨“ABC”⟩++⟨“DEFG”⟩=⟨“AB”⟩++⟨“CD”⟩++⟨“EFG”⟩
9 s4s3 ⟨“ABCDEFG”⟩=⟨“ABCD”⟩++⟨“EFG”⟩
10 3 8 9 3eqtr4ri ⟨“ABCDEFG”⟩=⟨“ABC”⟩++⟨“DEFG”⟩