Metamath Proof Explorer


Theorem s2dm

Description: The domain of a doubleton word is an unordered pair. (Contributed by AV, 9-Jan-2020)

Ref Expression
Assertion s2dm dom⟨“AB”⟩=01

Proof

Step Hyp Ref Expression
1 s2cli ⟨“AB”⟩WordV
2 wrdf ⟨“AB”⟩WordV⟨“AB”⟩:0..^⟨“AB”⟩V
3 1 2 ax-mp ⟨“AB”⟩:0..^⟨“AB”⟩V
4 s2len ⟨“AB”⟩=2
5 oveq2 ⟨“AB”⟩=20..^⟨“AB”⟩=0..^2
6 fzo0to2pr 0..^2=01
7 5 6 eqtrdi ⟨“AB”⟩=20..^⟨“AB”⟩=01
8 4 7 ax-mp 0..^⟨“AB”⟩=01
9 8 feq2i ⟨“AB”⟩:0..^⟨“AB”⟩V⟨“AB”⟩:01V
10 3 9 mpbi ⟨“AB”⟩:01V
11 10 fdmi dom⟨“AB”⟩=01