Metamath Proof Explorer


Theorem wrdf

Description: A word is a zero-based sequence with a recoverable upper limit. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion wrdf WWordSW:0..^WS

Proof

Step Hyp Ref Expression
1 iswrd WWordSl0W:0..^lS
2 simpr l0W:0..^lSW:0..^lS
3 fnfzo0hash l0W:0..^lSW=l
4 3 oveq2d l0W:0..^lS0..^W=0..^l
5 4 feq2d l0W:0..^lSW:0..^WSW:0..^lS
6 2 5 mpbird l0W:0..^lSW:0..^WS
7 6 rexlimiva l0W:0..^lSW:0..^WS
8 1 7 sylbi WWordSW:0..^WS