Metamath Proof Explorer


Theorem s5cld

Description: A length 5 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses s2cld.1 φAX
s2cld.2 φBX
s3cld.3 φCX
s4cld.4 φDX
s5cld.5 φEX
Assertion s5cld φ⟨“ABCDE”⟩WordX

Proof

Step Hyp Ref Expression
1 s2cld.1 φAX
2 s2cld.2 φBX
3 s3cld.3 φCX
4 s4cld.4 φDX
5 s5cld.5 φEX
6 df-s5 ⟨“ABCDE”⟩=⟨“ABCD”⟩++⟨“E”⟩
7 1 2 3 4 s4cld φ⟨“ABCD”⟩WordX
8 6 7 5 cats1cld φ⟨“ABCDE”⟩WordX