Metamath Proof Explorer


Theorem s2f1o

Description: A length 2 word with mutually different symbols is a one-to-one function onto the set of the symbols. (Contributed by Alexander van der Vekens, 14-Aug-2017)

Ref Expression
Assertion s2f1o ASBSABE=⟨“AB”⟩E:011-1 ontoAB

Proof

Step Hyp Ref Expression
1 simpl1 ASBSABE=⟨“AB”⟩AS
2 0z 0
3 1 2 jctil ASBSABE=⟨“AB”⟩0AS
4 simpl2 ASBSABE=⟨“AB”⟩BS
5 1z 1
6 4 5 jctil ASBSABE=⟨“AB”⟩1BS
7 3 6 jca ASBSABE=⟨“AB”⟩0AS1BS
8 simpl3 ASBSABE=⟨“AB”⟩AB
9 0ne1 01
10 8 9 jctil ASBSABE=⟨“AB”⟩01AB
11 f1oprg 0AS1BS01AB0A1B:011-1 ontoAB
12 7 10 11 sylc ASBSABE=⟨“AB”⟩0A1B:011-1 ontoAB
13 eqcom E=⟨“AB”⟩⟨“AB”⟩=E
14 s2prop ASBS⟨“AB”⟩=0A1B
15 14 3adant3 ASBSAB⟨“AB”⟩=0A1B
16 15 eqeq1d ASBSAB⟨“AB”⟩=E0A1B=E
17 13 16 bitrid ASBSABE=⟨“AB”⟩0A1B=E
18 17 biimpa ASBSABE=⟨“AB”⟩0A1B=E
19 18 f1oeq1d ASBSABE=⟨“AB”⟩0A1B:011-1 ontoABE:011-1 ontoAB
20 12 19 mpbid ASBSABE=⟨“AB”⟩E:011-1 ontoAB
21 20 ex ASBSABE=⟨“AB”⟩E:011-1 ontoAB