Metamath Proof Explorer


Theorem f1oeq1d

Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis f1oeq1d.1 φF=G
Assertion f1oeq1d φF:A1-1 ontoBG:A1-1 ontoB

Proof

Step Hyp Ref Expression
1 f1oeq1d.1 φF=G
2 f1oeq1 F=GF:A1-1 ontoBG:A1-1 ontoB
3 1 2 syl φF:A1-1 ontoBG:A1-1 ontoB