Metamath Proof Explorer


Theorem wrdl2exs2

Description: A word of length two is a doubleton word. (Contributed by AV, 25-Jan-2021)

Ref Expression
Assertion wrdl2exs2 WWordSW=2sStSW=⟨“st”⟩

Proof

Step Hyp Ref Expression
1 1le2 12
2 breq2 W=21W12
3 1 2 mpbiri W=21W
4 wrdsymb1 WWordS1WW0S
5 3 4 sylan2 WWordSW=2W0S
6 lsw WWordSlastSW=WW1
7 oveq1 W=2W1=21
8 2m1e1 21=1
9 7 8 eqtrdi W=2W1=1
10 9 fveq2d W=2WW1=W1
11 6 10 sylan9eq WWordSW=2lastSW=W1
12 2nn 2
13 lswlgt0cl 2WWordSW=2lastSWS
14 12 13 mpan WWordSW=2lastSWS
15 11 14 eqeltrrd WWordSW=2W1S
16 wrdlen2s2 WWordSW=2W=⟨“W0W1”⟩
17 id s=W0s=W0
18 eqidd s=W0t=t
19 17 18 s2eqd s=W0⟨“st”⟩=⟨“W0t”⟩
20 19 eqeq2d s=W0W=⟨“st”⟩W=⟨“W0t”⟩
21 eqidd t=W1W0=W0
22 id t=W1t=W1
23 21 22 s2eqd t=W1⟨“W0t”⟩=⟨“W0W1”⟩
24 23 eqeq2d t=W1W=⟨“W0t”⟩W=⟨“W0W1”⟩
25 20 24 rspc2ev W0SW1SW=⟨“W0W1”⟩sStSW=⟨“st”⟩
26 5 15 16 25 syl3anc WWordSW=2sStSW=⟨“st”⟩