Metamath Proof Explorer


Theorem s2eq2seq

Description: Two length 2 words are equal iff the corresponding symbols are equal. (Contributed by AV, 20-Oct-2018)

Ref Expression
Assertion s2eq2seq AVBVCVDV⟨“AB”⟩=⟨“CD”⟩A=CB=D

Proof

Step Hyp Ref Expression
1 s2eq2s1eq AVBVCVDV⟨“AB”⟩=⟨“CD”⟩⟨“A”⟩=⟨“C”⟩⟨“B”⟩=⟨“D”⟩
2 s111 AVCV⟨“A”⟩=⟨“C”⟩A=C
3 2 ad2ant2r AVBVCVDV⟨“A”⟩=⟨“C”⟩A=C
4 s111 BVDV⟨“B”⟩=⟨“D”⟩B=D
5 4 ad2ant2l AVBVCVDV⟨“B”⟩=⟨“D”⟩B=D
6 3 5 anbi12d AVBVCVDV⟨“A”⟩=⟨“C”⟩⟨“B”⟩=⟨“D”⟩A=CB=D
7 1 6 bitrd AVBVCVDV⟨“AB”⟩=⟨“CD”⟩A=CB=D