Metamath Proof Explorer


Theorem lsws2

Description: The last symbol of a doubleton word is its second symbol. (Contributed by AV, 8-Feb-2021)

Ref Expression
Assertion lsws2 BVlastS⟨“AB”⟩=B

Proof

Step Hyp Ref Expression
1 s2cli ⟨“AB”⟩WordV
2 lsw ⟨“AB”⟩WordVlastS⟨“AB”⟩=⟨“AB”⟩⟨“AB”⟩1
3 1 2 mp1i BVlastS⟨“AB”⟩=⟨“AB”⟩⟨“AB”⟩1
4 s2len ⟨“AB”⟩=2
5 4 oveq1i ⟨“AB”⟩1=21
6 2m1e1 21=1
7 5 6 eqtri ⟨“AB”⟩1=1
8 7 fveq2i ⟨“AB”⟩⟨“AB”⟩1=⟨“AB”⟩1
9 8 a1i BV⟨“AB”⟩⟨“AB”⟩1=⟨“AB”⟩1
10 s2fv1 BV⟨“AB”⟩1=B
11 3 9 10 3eqtrd BVlastS⟨“AB”⟩=B