| Step |
Hyp |
Ref |
Expression |
| 1 |
|
c0ex |
|
| 2 |
1
|
tpid1 |
|
| 3 |
|
fzo0to3tp |
|
| 4 |
2 3
|
eleqtrri |
|
| 5 |
|
oveq2 |
|
| 6 |
4 5
|
eleqtrrid |
|
| 7 |
|
wrdsymbcl |
|
| 8 |
6 7
|
sylan2 |
|
| 9 |
|
1ex |
|
| 10 |
9
|
tpid2 |
|
| 11 |
10 3
|
eleqtrri |
|
| 12 |
11 5
|
eleqtrrid |
|
| 13 |
|
wrdsymbcl |
|
| 14 |
12 13
|
sylan2 |
|
| 15 |
|
2ex |
|
| 16 |
15
|
tpid3 |
|
| 17 |
16 3
|
eleqtrri |
|
| 18 |
17 5
|
eleqtrrid |
|
| 19 |
|
wrdsymbcl |
|
| 20 |
18 19
|
sylan2 |
|
| 21 |
|
simpr |
|
| 22 |
|
eqid |
|
| 23 |
|
eqid |
|
| 24 |
|
eqid |
|
| 25 |
22 23 24
|
3pm3.2i |
|
| 26 |
21 25
|
jctir |
|
| 27 |
|
eqeq2 |
|
| 28 |
27
|
3anbi1d |
|
| 29 |
28
|
anbi2d |
|
| 30 |
|
eqeq2 |
|
| 31 |
30
|
3anbi2d |
|
| 32 |
31
|
anbi2d |
|
| 33 |
|
eqeq2 |
|
| 34 |
33
|
3anbi3d |
|
| 35 |
34
|
anbi2d |
|
| 36 |
29 32 35
|
rspc3ev |
|
| 37 |
8 14 20 26 36
|
syl31anc |
|
| 38 |
|
df-3an |
|
| 39 |
|
eqwrds3 |
|
| 40 |
39
|
ex |
|
| 41 |
38 40
|
biimtrrid |
|
| 42 |
41
|
expd |
|
| 43 |
42
|
adantr |
|
| 44 |
43
|
imp31 |
|
| 45 |
44
|
rexbidva |
|
| 46 |
45
|
2rexbidva |
|
| 47 |
37 46
|
mpbird |
|
| 48 |
|
s3cl |
|
| 49 |
48
|
ad4ant123 |
|
| 50 |
|
s3len |
|
| 51 |
49 50
|
jctir |
|
| 52 |
|
eleq1 |
|
| 53 |
|
fveqeq2 |
|
| 54 |
52 53
|
anbi12d |
|
| 55 |
54
|
adantl |
|
| 56 |
51 55
|
mpbird |
|
| 57 |
56
|
rexlimdva2 |
|
| 58 |
57
|
rexlimivv |
|
| 59 |
47 58
|
impbii |
|