Metamath Proof Explorer


Theorem ofs1

Description: Letterwise operations on a single letter word. (Contributed by Thierry Arnoux, 7-Oct-2018)

Ref Expression
Assertion ofs1 ASBT⟨“A”⟩Rf⟨“B”⟩=⟨“ARB”⟩

Proof

Step Hyp Ref Expression
1 snex 0V
2 1 a1i ASBT0V
3 simpll ASBTi0AS
4 simplr ASBTi0BT
5 s1val AS⟨“A”⟩=0A
6 0nn0 00
7 fmptsn 00AS0A=i0A
8 6 7 mpan AS0A=i0A
9 5 8 eqtrd AS⟨“A”⟩=i0A
10 9 adantr ASBT⟨“A”⟩=i0A
11 s1val BT⟨“B”⟩=0B
12 fmptsn 00BT0B=i0B
13 6 12 mpan BT0B=i0B
14 11 13 eqtrd BT⟨“B”⟩=i0B
15 14 adantl ASBT⟨“B”⟩=i0B
16 2 3 4 10 15 offval2 ASBT⟨“A”⟩Rf⟨“B”⟩=i0ARB
17 ovex ARBV
18 s1val ARBV⟨“ARB”⟩=0ARB
19 17 18 ax-mp ⟨“ARB”⟩=0ARB
20 fmptsn 00ARBV0ARB=i0ARB
21 6 17 20 mp2an 0ARB=i0ARB
22 19 21 eqtri ⟨“ARB”⟩=i0ARB
23 16 22 eqtr4di ASBT⟨“A”⟩Rf⟨“B”⟩=⟨“ARB”⟩