Metamath Proof Explorer


Definition df-of

Description: Define the function operation map. The definition is designed so that if R is a binary operation, then oF R is the analogous operation on functions which corresponds to applying R pointwise to the values of the functions. (Contributed by Mario Carneiro, 20-Jul-2014)

Ref Expression
Assertion df-of fR=fV,gVxdomfdomgfxRgx

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR classR
1 0 cof classfR
2 vf setvarf
3 cvv classV
4 vg setvarg
5 vx setvarx
6 2 cv setvarf
7 6 cdm classdomf
8 4 cv setvarg
9 8 cdm classdomg
10 7 9 cin classdomfdomg
11 5 cv setvarx
12 11 6 cfv classfx
13 11 8 cfv classgx
14 12 13 0 co classfxRgx
15 5 10 14 cmpt classxdomfdomgfxRgx
16 2 4 3 3 15 cmpo classfV,gVxdomfdomgfxRgx
17 1 16 wceq wfffR=fV,gVxdomfdomgfxRgx