Metamath Proof Explorer


Theorem fmptsn

Description: Express a singleton function in maps-to notation. (Contributed by NM, 6-Jun-2006) (Proof shortened by Andrew Salmon, 22-Oct-2011) (Revised by Stefan O'Rear, 28-Feb-2015)

Ref Expression
Assertion fmptsn AVBWAB=xAB

Proof

Step Hyp Ref Expression
1 xpsng AVBWA×B=AB
2 fconstmpt A×B=xAB
3 1 2 eqtr3di AVBWAB=xAB