Metamath Proof Explorer


Theorem s0s1

Description: Concatenation of fixed length strings. (This special case of ccatlid is provided to complete the pattern s0s1 , df-s2 , df-s3 , ...) (Contributed by Mario Carneiro, 28-Feb-2016)

Ref Expression
Assertion s0s1 ⟨“A”⟩=++⟨“A”⟩

Proof

Step Hyp Ref Expression
1 s1cli ⟨“A”⟩WordV
2 ccatlid ⟨“A”⟩WordV++⟨“A”⟩=⟨“A”⟩
3 1 2 ax-mp ++⟨“A”⟩=⟨“A”⟩
4 3 eqcomi ⟨“A”⟩=++⟨“A”⟩