Metamath Proof Explorer


Theorem brtrclfvcnv

Description: Two ways of expressing the transitive closure of the converse of a binary relation. (Contributed by RP, 10-May-2020)

Ref Expression
Assertion brtrclfvcnv ( 𝑅𝑉 → ( 𝐴 ( t+ ‘ 𝑅 ) 𝐵 ↔ ∀ 𝑟 ( ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) → 𝐴 𝑟 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 cnvexg ( 𝑅𝑉 𝑅 ∈ V )
2 brtrclfv ( 𝑅 ∈ V → ( 𝐴 ( t+ ‘ 𝑅 ) 𝐵 ↔ ∀ 𝑟 ( ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) → 𝐴 𝑟 𝐵 ) ) )
3 1 2 syl ( 𝑅𝑉 → ( 𝐴 ( t+ ‘ 𝑅 ) 𝐵 ↔ ∀ 𝑟 ( ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) → 𝐴 𝑟 𝐵 ) ) )