Metamath Proof Explorer


Theorem brcnvtrclfvcnv

Description: Two ways of expressing the transitive closure of the converse of the converse of a binary relation. (Contributed by RP, 10-May-2020)

Ref Expression
Assertion brcnvtrclfvcnv ( ( 𝑅𝑈𝐴𝑉𝐵𝑊 ) → ( 𝐴 ( t+ ‘ 𝑅 ) 𝐵 ↔ ∀ 𝑟 ( ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) → 𝐵 𝑟 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 cnvexg ( 𝑅𝑈 𝑅 ∈ V )
2 brcnvtrclfv ( ( 𝑅 ∈ V ∧ 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ( t+ ‘ 𝑅 ) 𝐵 ↔ ∀ 𝑟 ( ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) → 𝐵 𝑟 𝐴 ) ) )
3 1 2 syl3an1 ( ( 𝑅𝑈𝐴𝑉𝐵𝑊 ) → ( 𝐴 ( t+ ‘ 𝑅 ) 𝐵 ↔ ∀ 𝑟 ( ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) → 𝐵 𝑟 𝐴 ) ) )