Metamath Proof Explorer
Description: Two ways of expressing the transitive closure of the converse of the
converse of a binary relation. (Contributed by RP, 10-May-2020)
|
|
Ref |
Expression |
|
Assertion |
brcnvtrclfvcnv |
⊢ ( ( 𝑅 ∈ 𝑈 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ◡ ( t+ ‘ ◡ 𝑅 ) 𝐵 ↔ ∀ 𝑟 ( ( ◡ 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) → 𝐵 𝑟 𝐴 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
cnvexg |
⊢ ( 𝑅 ∈ 𝑈 → ◡ 𝑅 ∈ V ) |
2 |
|
brcnvtrclfv |
⊢ ( ( ◡ 𝑅 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ◡ ( t+ ‘ ◡ 𝑅 ) 𝐵 ↔ ∀ 𝑟 ( ( ◡ 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) → 𝐵 𝑟 𝐴 ) ) ) |
3 |
1 2
|
syl3an1 |
⊢ ( ( 𝑅 ∈ 𝑈 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ◡ ( t+ ‘ ◡ 𝑅 ) 𝐵 ↔ ∀ 𝑟 ( ( ◡ 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) → 𝐵 𝑟 𝐴 ) ) ) |