Description: Two ways of expressing the transitive closure of the converse of the converse of a binary relation. (Contributed by RP, 10-May-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | brcnvtrclfvcnv | |- ( ( R e. U /\ A e. V /\ B e. W ) -> ( A `' ( t+ ` `' R ) B <-> A. r ( ( `' R C_ r /\ ( r o. r ) C_ r ) -> B r A ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvexg | |- ( R e. U -> `' R e. _V ) |
|
2 | brcnvtrclfv | |- ( ( `' R e. _V /\ A e. V /\ B e. W ) -> ( A `' ( t+ ` `' R ) B <-> A. r ( ( `' R C_ r /\ ( r o. r ) C_ r ) -> B r A ) ) ) |
|
3 | 1 2 | syl3an1 | |- ( ( R e. U /\ A e. V /\ B e. W ) -> ( A `' ( t+ ` `' R ) B <-> A. r ( ( `' R C_ r /\ ( r o. r ) C_ r ) -> B r A ) ) ) |