Metamath Proof Explorer


Theorem brcnvtrclfvcnv

Description: Two ways of expressing the transitive closure of the converse of the converse of a binary relation. (Contributed by RP, 10-May-2020)

Ref Expression
Assertion brcnvtrclfvcnv
|- ( ( R e. U /\ A e. V /\ B e. W ) -> ( A `' ( t+ ` `' R ) B <-> A. r ( ( `' R C_ r /\ ( r o. r ) C_ r ) -> B r A ) ) )

Proof

Step Hyp Ref Expression
1 cnvexg
 |-  ( R e. U -> `' R e. _V )
2 brcnvtrclfv
 |-  ( ( `' R e. _V /\ A e. V /\ B e. W ) -> ( A `' ( t+ ` `' R ) B <-> A. r ( ( `' R C_ r /\ ( r o. r ) C_ r ) -> B r A ) ) )
3 1 2 syl3an1
 |-  ( ( R e. U /\ A e. V /\ B e. W ) -> ( A `' ( t+ ` `' R ) B <-> A. r ( ( `' R C_ r /\ ( r o. r ) C_ r ) -> B r A ) ) )