Step |
Hyp |
Ref |
Expression |
1 |
|
relcnv |
|- Rel `' A |
2 |
|
relssdmrn |
|- ( Rel `' A -> `' A C_ ( dom `' A X. ran `' A ) ) |
3 |
1 2
|
ax-mp |
|- `' A C_ ( dom `' A X. ran `' A ) |
4 |
|
df-rn |
|- ran A = dom `' A |
5 |
|
rnexg |
|- ( A e. V -> ran A e. _V ) |
6 |
4 5
|
eqeltrrid |
|- ( A e. V -> dom `' A e. _V ) |
7 |
|
dfdm4 |
|- dom A = ran `' A |
8 |
|
dmexg |
|- ( A e. V -> dom A e. _V ) |
9 |
7 8
|
eqeltrrid |
|- ( A e. V -> ran `' A e. _V ) |
10 |
6 9
|
xpexd |
|- ( A e. V -> ( dom `' A X. ran `' A ) e. _V ) |
11 |
|
ssexg |
|- ( ( `' A C_ ( dom `' A X. ran `' A ) /\ ( dom `' A X. ran `' A ) e. _V ) -> `' A e. _V ) |
12 |
3 10 11
|
sylancr |
|- ( A e. V -> `' A e. _V ) |