| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							relcnv | 
							⊢ Rel  ◡ 𝐴  | 
						
						
							| 2 | 
							
								
							 | 
							relssdmrn | 
							⊢ ( Rel  ◡ 𝐴  →  ◡ 𝐴  ⊆  ( dom  ◡ 𝐴  ×  ran  ◡ 𝐴 ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							ax-mp | 
							⊢ ◡ 𝐴  ⊆  ( dom  ◡ 𝐴  ×  ran  ◡ 𝐴 )  | 
						
						
							| 4 | 
							
								
							 | 
							df-rn | 
							⊢ ran  𝐴  =  dom  ◡ 𝐴  | 
						
						
							| 5 | 
							
								
							 | 
							rnexg | 
							⊢ ( 𝐴  ∈  𝑉  →  ran  𝐴  ∈  V )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							eqeltrrid | 
							⊢ ( 𝐴  ∈  𝑉  →  dom  ◡ 𝐴  ∈  V )  | 
						
						
							| 7 | 
							
								
							 | 
							dfdm4 | 
							⊢ dom  𝐴  =  ran  ◡ 𝐴  | 
						
						
							| 8 | 
							
								
							 | 
							dmexg | 
							⊢ ( 𝐴  ∈  𝑉  →  dom  𝐴  ∈  V )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							eqeltrrid | 
							⊢ ( 𝐴  ∈  𝑉  →  ran  ◡ 𝐴  ∈  V )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							xpexd | 
							⊢ ( 𝐴  ∈  𝑉  →  ( dom  ◡ 𝐴  ×  ran  ◡ 𝐴 )  ∈  V )  | 
						
						
							| 11 | 
							
								
							 | 
							ssexg | 
							⊢ ( ( ◡ 𝐴  ⊆  ( dom  ◡ 𝐴  ×  ran  ◡ 𝐴 )  ∧  ( dom  ◡ 𝐴  ×  ran  ◡ 𝐴 )  ∈  V )  →  ◡ 𝐴  ∈  V )  | 
						
						
							| 12 | 
							
								3 10 11
							 | 
							sylancr | 
							⊢ ( 𝐴  ∈  𝑉  →  ◡ 𝐴  ∈  V )  |