Step |
Hyp |
Ref |
Expression |
1 |
|
relcnv |
⊢ Rel ◡ 𝐴 |
2 |
|
relssdmrn |
⊢ ( Rel ◡ 𝐴 → ◡ 𝐴 ⊆ ( dom ◡ 𝐴 × ran ◡ 𝐴 ) ) |
3 |
1 2
|
ax-mp |
⊢ ◡ 𝐴 ⊆ ( dom ◡ 𝐴 × ran ◡ 𝐴 ) |
4 |
|
df-rn |
⊢ ran 𝐴 = dom ◡ 𝐴 |
5 |
|
rnexg |
⊢ ( 𝐴 ∈ 𝑉 → ran 𝐴 ∈ V ) |
6 |
4 5
|
eqeltrrid |
⊢ ( 𝐴 ∈ 𝑉 → dom ◡ 𝐴 ∈ V ) |
7 |
|
dfdm4 |
⊢ dom 𝐴 = ran ◡ 𝐴 |
8 |
|
dmexg |
⊢ ( 𝐴 ∈ 𝑉 → dom 𝐴 ∈ V ) |
9 |
7 8
|
eqeltrrid |
⊢ ( 𝐴 ∈ 𝑉 → ran ◡ 𝐴 ∈ V ) |
10 |
6 9
|
xpexd |
⊢ ( 𝐴 ∈ 𝑉 → ( dom ◡ 𝐴 × ran ◡ 𝐴 ) ∈ V ) |
11 |
|
ssexg |
⊢ ( ( ◡ 𝐴 ⊆ ( dom ◡ 𝐴 × ran ◡ 𝐴 ) ∧ ( dom ◡ 𝐴 × ran ◡ 𝐴 ) ∈ V ) → ◡ 𝐴 ∈ V ) |
12 |
3 10 11
|
sylancr |
⊢ ( 𝐴 ∈ 𝑉 → ◡ 𝐴 ∈ V ) |