Metamath Proof Explorer


Theorem cnvexg

Description: The converse of a set is a set. Corollary 6.8(1) of TakeutiZaring p. 26. (Contributed by NM, 17-Mar-1998)

Ref Expression
Assertion cnvexg ( 𝐴𝑉 𝐴 ∈ V )

Proof

Step Hyp Ref Expression
1 relcnv Rel 𝐴
2 relssdmrn ( Rel 𝐴 𝐴 ⊆ ( dom 𝐴 × ran 𝐴 ) )
3 1 2 ax-mp 𝐴 ⊆ ( dom 𝐴 × ran 𝐴 )
4 df-rn ran 𝐴 = dom 𝐴
5 rnexg ( 𝐴𝑉 → ran 𝐴 ∈ V )
6 4 5 eqeltrrid ( 𝐴𝑉 → dom 𝐴 ∈ V )
7 dfdm4 dom 𝐴 = ran 𝐴
8 dmexg ( 𝐴𝑉 → dom 𝐴 ∈ V )
9 7 8 eqeltrrid ( 𝐴𝑉 → ran 𝐴 ∈ V )
10 6 9 xpexd ( 𝐴𝑉 → ( dom 𝐴 × ran 𝐴 ) ∈ V )
11 ssexg ( ( 𝐴 ⊆ ( dom 𝐴 × ran 𝐴 ) ∧ ( dom 𝐴 × ran 𝐴 ) ∈ V ) → 𝐴 ∈ V )
12 3 10 11 sylancr ( 𝐴𝑉 𝐴 ∈ V )