Metamath Proof Explorer


Theorem cnvexg

Description: The converse of a set is a set. Corollary 6.8(1) of TakeutiZaring p. 26. (Contributed by NM, 17-Mar-1998)

Ref Expression
Assertion cnvexg AVA-1V

Proof

Step Hyp Ref Expression
1 relcnv RelA-1
2 relssdmrn RelA-1A-1domA-1×ranA-1
3 1 2 ax-mp A-1domA-1×ranA-1
4 df-rn ranA=domA-1
5 rnexg AVranAV
6 4 5 eqeltrrid AVdomA-1V
7 dfdm4 domA=ranA-1
8 dmexg AVdomAV
9 7 8 eqeltrrid AVranA-1V
10 6 9 xpexd AVdomA-1×ranA-1V
11 ssexg A-1domA-1×ranA-1domA-1×ranA-1VA-1V
12 3 10 11 sylancr AVA-1V