Metamath Proof Explorer


Theorem cnvexg

Description: The converse of a set is a set. Corollary 6.8(1) of TakeutiZaring p. 26. (Contributed by NM, 17-Mar-1998)

Ref Expression
Assertion cnvexg A V A -1 V

Proof

Step Hyp Ref Expression
1 relcnv Rel A -1
2 relssdmrn Rel A -1 A -1 dom A -1 × ran A -1
3 1 2 ax-mp A -1 dom A -1 × ran A -1
4 df-rn ran A = dom A -1
5 rnexg A V ran A V
6 4 5 eqeltrrid A V dom A -1 V
7 dfdm4 dom A = ran A -1
8 dmexg A V dom A V
9 7 8 eqeltrrid A V ran A -1 V
10 6 9 xpexd A V dom A -1 × ran A -1 V
11 ssexg A -1 dom A -1 × ran A -1 dom A -1 × ran A -1 V A -1 V
12 3 10 11 sylancr A V A -1 V