Metamath Proof Explorer


Theorem trclfvss

Description: The transitive closure (as a relation) of a subclass is a subclass of the transitive closure. (Contributed by RP, 3-May-2020)

Ref Expression
Assertion trclfvss
|- ( ( R e. V /\ S e. W /\ R C_ S ) -> ( t+ ` R ) C_ ( t+ ` S ) )

Proof

Step Hyp Ref Expression
1 trclsslem
 |-  ( R C_ S -> |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } C_ |^| { r | ( S C_ r /\ ( r o. r ) C_ r ) } )
2 1 3ad2ant3
 |-  ( ( R e. V /\ S e. W /\ R C_ S ) -> |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } C_ |^| { r | ( S C_ r /\ ( r o. r ) C_ r ) } )
3 trclfv
 |-  ( R e. V -> ( t+ ` R ) = |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } )
4 3 3ad2ant1
 |-  ( ( R e. V /\ S e. W /\ R C_ S ) -> ( t+ ` R ) = |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } )
5 trclfv
 |-  ( S e. W -> ( t+ ` S ) = |^| { r | ( S C_ r /\ ( r o. r ) C_ r ) } )
6 5 3ad2ant2
 |-  ( ( R e. V /\ S e. W /\ R C_ S ) -> ( t+ ` S ) = |^| { r | ( S C_ r /\ ( r o. r ) C_ r ) } )
7 2 4 6 3sstr4d
 |-  ( ( R e. V /\ S e. W /\ R C_ S ) -> ( t+ ` R ) C_ ( t+ ` S ) )