Step |
Hyp |
Ref |
Expression |
1 |
|
trclsslem |
|- ( R C_ S -> |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } C_ |^| { r | ( S C_ r /\ ( r o. r ) C_ r ) } ) |
2 |
1
|
3ad2ant3 |
|- ( ( R e. V /\ S e. W /\ R C_ S ) -> |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } C_ |^| { r | ( S C_ r /\ ( r o. r ) C_ r ) } ) |
3 |
|
trclfv |
|- ( R e. V -> ( t+ ` R ) = |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } ) |
4 |
3
|
3ad2ant1 |
|- ( ( R e. V /\ S e. W /\ R C_ S ) -> ( t+ ` R ) = |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } ) |
5 |
|
trclfv |
|- ( S e. W -> ( t+ ` S ) = |^| { r | ( S C_ r /\ ( r o. r ) C_ r ) } ) |
6 |
5
|
3ad2ant2 |
|- ( ( R e. V /\ S e. W /\ R C_ S ) -> ( t+ ` S ) = |^| { r | ( S C_ r /\ ( r o. r ) C_ r ) } ) |
7 |
2 4 6
|
3sstr4d |
|- ( ( R e. V /\ S e. W /\ R C_ S ) -> ( t+ ` R ) C_ ( t+ ` S ) ) |