Metamath Proof Explorer


Theorem trclfvss

Description: The transitive closure (as a relation) of a subclass is a subclass of the transitive closure. (Contributed by RP, 3-May-2020)

Ref Expression
Assertion trclfvss RVSWRSt+Rt+S

Proof

Step Hyp Ref Expression
1 trclsslem RSr|Rrrrrr|Srrrr
2 1 3ad2ant3 RVSWRSr|Rrrrrr|Srrrr
3 trclfv RVt+R=r|Rrrrr
4 3 3ad2ant1 RVSWRSt+R=r|Rrrrr
5 trclfv SWt+S=r|Srrrr
6 5 3ad2ant2 RVSWRSt+S=r|Srrrr
7 2 4 6 3sstr4d RVSWRSt+Rt+S