Metamath Proof Explorer


Theorem trclfvss

Description: The transitive closure (as a relation) of a subclass is a subclass of the transitive closure. (Contributed by RP, 3-May-2020)

Ref Expression
Assertion trclfvss ( ( 𝑅𝑉𝑆𝑊𝑅𝑆 ) → ( t+ ‘ 𝑅 ) ⊆ ( t+ ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 trclsslem ( 𝑅𝑆 { 𝑟 ∣ ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } ⊆ { 𝑟 ∣ ( 𝑆𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } )
2 1 3ad2ant3 ( ( 𝑅𝑉𝑆𝑊𝑅𝑆 ) → { 𝑟 ∣ ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } ⊆ { 𝑟 ∣ ( 𝑆𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } )
3 trclfv ( 𝑅𝑉 → ( t+ ‘ 𝑅 ) = { 𝑟 ∣ ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } )
4 3 3ad2ant1 ( ( 𝑅𝑉𝑆𝑊𝑅𝑆 ) → ( t+ ‘ 𝑅 ) = { 𝑟 ∣ ( 𝑅𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } )
5 trclfv ( 𝑆𝑊 → ( t+ ‘ 𝑆 ) = { 𝑟 ∣ ( 𝑆𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } )
6 5 3ad2ant2 ( ( 𝑅𝑉𝑆𝑊𝑅𝑆 ) → ( t+ ‘ 𝑆 ) = { 𝑟 ∣ ( 𝑆𝑟 ∧ ( 𝑟𝑟 ) ⊆ 𝑟 ) } )
7 2 4 6 3sstr4d ( ( 𝑅𝑉𝑆𝑊𝑅𝑆 ) → ( t+ ‘ 𝑅 ) ⊆ ( t+ ‘ 𝑆 ) )