Step |
Hyp |
Ref |
Expression |
1 |
|
trclsslem |
⊢ ( 𝑅 ⊆ 𝑆 → ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } ⊆ ∩ { 𝑟 ∣ ( 𝑆 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } ) |
2 |
1
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝑅 ⊆ 𝑆 ) → ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } ⊆ ∩ { 𝑟 ∣ ( 𝑆 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } ) |
3 |
|
trclfv |
⊢ ( 𝑅 ∈ 𝑉 → ( t+ ‘ 𝑅 ) = ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝑅 ⊆ 𝑆 ) → ( t+ ‘ 𝑅 ) = ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } ) |
5 |
|
trclfv |
⊢ ( 𝑆 ∈ 𝑊 → ( t+ ‘ 𝑆 ) = ∩ { 𝑟 ∣ ( 𝑆 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } ) |
6 |
5
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝑅 ⊆ 𝑆 ) → ( t+ ‘ 𝑆 ) = ∩ { 𝑟 ∣ ( 𝑆 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } ) |
7 |
2 4 6
|
3sstr4d |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝑅 ⊆ 𝑆 ) → ( t+ ‘ 𝑅 ) ⊆ ( t+ ‘ 𝑆 ) ) |