Description: The transitive closure of a relation has an upper bound. (Contributed by RP, 28-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | trclfvub | ⊢ ( 𝑅 ∈ 𝑉 → ( t+ ‘ 𝑅 ) ⊆ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trclfv | ⊢ ( 𝑅 ∈ 𝑉 → ( t+ ‘ 𝑅 ) = ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } ) | |
2 | trclubg | ⊢ ( 𝑅 ∈ 𝑉 → ∩ { 𝑟 ∣ ( 𝑅 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } ⊆ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ) | |
3 | 1 2 | eqsstrd | ⊢ ( 𝑅 ∈ 𝑉 → ( t+ ‘ 𝑅 ) ⊆ ( 𝑅 ∪ ( dom 𝑅 × ran 𝑅 ) ) ) |