Metamath Proof Explorer


Theorem trclfvub

Description: The transitive closure of a relation has an upper bound. (Contributed by RP, 28-Apr-2020)

Ref Expression
Assertion trclfvub
|- ( R e. V -> ( t+ ` R ) C_ ( R u. ( dom R X. ran R ) ) )

Proof

Step Hyp Ref Expression
1 trclfv
 |-  ( R e. V -> ( t+ ` R ) = |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } )
2 trclubg
 |-  ( R e. V -> |^| { r | ( R C_ r /\ ( r o. r ) C_ r ) } C_ ( R u. ( dom R X. ran R ) ) )
3 1 2 eqsstrd
 |-  ( R e. V -> ( t+ ` R ) C_ ( R u. ( dom R X. ran R ) ) )