| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-rtrcl |
|
| 2 |
|
ancom |
|
| 3 |
2
|
anbi2i |
|
| 4 |
3
|
abbii |
|
| 5 |
4
|
inteqi |
|
| 6 |
5
|
mpteq2i |
|
| 7 |
|
vex |
|
| 8 |
7
|
rtrclexi |
|
| 9 |
8
|
a1i |
|
| 10 |
|
dmexg |
|
| 11 |
|
rnexg |
|
| 12 |
10 11
|
unexd |
|
| 13 |
|
resiexg |
|
| 14 |
7 12 13
|
mp2b |
|
| 15 |
7 14
|
unex |
|
| 16 |
15
|
trclexi |
|
| 17 |
16
|
a1i |
|
| 18 |
|
simpr |
|
| 19 |
18
|
cotrintab |
|
| 20 |
19
|
a1i |
|
| 21 |
7
|
dmex |
|
| 22 |
7
|
rnex |
|
| 23 |
|
unexg |
|
| 24 |
23
|
resiexd |
|
| 25 |
21 22 24
|
mp2an |
|
| 26 |
7 25
|
unex |
|
| 27 |
|
dmtrcl |
|
| 28 |
26 27
|
ax-mp |
|
| 29 |
|
dmun |
|
| 30 |
|
dmresi |
|
| 31 |
30
|
uneq2i |
|
| 32 |
|
ssun1 |
|
| 33 |
|
ssequn1 |
|
| 34 |
32 33
|
mpbi |
|
| 35 |
29 31 34
|
3eqtri |
|
| 36 |
28 35
|
eqtri |
|
| 37 |
|
rntrcl |
|
| 38 |
26 37
|
ax-mp |
|
| 39 |
|
rnun |
|
| 40 |
|
rnresi |
|
| 41 |
40
|
uneq2i |
|
| 42 |
|
ssun2 |
|
| 43 |
|
ssequn1 |
|
| 44 |
42 43
|
mpbi |
|
| 45 |
39 41 44
|
3eqtri |
|
| 46 |
38 45
|
eqtri |
|
| 47 |
36 46
|
uneq12i |
|
| 48 |
|
unidm |
|
| 49 |
47 48
|
eqtri |
|
| 50 |
49
|
reseq2i |
|
| 51 |
|
ssun2 |
|
| 52 |
|
ssmin |
|
| 53 |
51 52
|
sstri |
|
| 54 |
50 53
|
eqsstri |
|
| 55 |
54
|
a1i |
|
| 56 |
|
simprl |
|
| 57 |
56
|
cotrintab |
|
| 58 |
57
|
a1i |
|
| 59 |
|
id |
|
| 60 |
59 59
|
coeq12d |
|
| 61 |
60 59
|
sseq12d |
|
| 62 |
|
dmeq |
|
| 63 |
|
rneq |
|
| 64 |
62 63
|
uneq12d |
|
| 65 |
64
|
reseq2d |
|
| 66 |
65 59
|
sseq12d |
|
| 67 |
|
id |
|
| 68 |
67 67
|
coeq12d |
|
| 69 |
68 67
|
sseq12d |
|
| 70 |
9 17 20 55 58 61 66 69
|
mptrcllem |
|
| 71 |
|
df-3an |
|
| 72 |
|
ancom |
|
| 73 |
|
unss |
|
| 74 |
72 73
|
bitri |
|
| 75 |
74
|
anbi1i |
|
| 76 |
71 75
|
bitr2i |
|
| 77 |
76
|
abbii |
|
| 78 |
77
|
inteqi |
|
| 79 |
78
|
mpteq2i |
|
| 80 |
6 70 79
|
3eqtri |
|
| 81 |
1 80
|
eqtr4i |
|