Description: The reflexive-transitive closure of a set exists. (Contributed by RP, 27-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rtrclexi.1 | |
|
Assertion | rtrclexi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rtrclexi.1 | |
|
2 | ssun1 | |
|
3 | coundir | |
|
4 | coundi | |
|
5 | cossxp | |
|
6 | ssun1 | |
|
7 | ssun2 | |
|
8 | xpss12 | |
|
9 | 6 7 8 | mp2an | |
10 | 5 9 | sstri | |
11 | cossxp | |
|
12 | dmxpss | |
|
13 | xpss12 | |
|
14 | 12 7 13 | mp2an | |
15 | 11 14 | sstri | |
16 | 10 15 | unssi | |
17 | 4 16 | eqsstri | |
18 | coundi | |
|
19 | cossxp | |
|
20 | rnxpss | |
|
21 | xpss12 | |
|
22 | 6 20 21 | mp2an | |
23 | 19 22 | sstri | |
24 | xpidtr | |
|
25 | 23 24 | unssi | |
26 | 18 25 | eqsstri | |
27 | 17 26 | unssi | |
28 | 3 27 | eqsstri | |
29 | ssun2 | |
|
30 | 28 29 | sstri | |
31 | dmun | |
|
32 | 6 12 | unssi | |
33 | 31 32 | eqsstri | |
34 | rnun | |
|
35 | 7 20 | unssi | |
36 | 34 35 | eqsstri | |
37 | 33 36 | unssi | |
38 | ssres2 | |
|
39 | 37 38 | ax-mp | |
40 | idssxp | |
|
41 | 39 40 | sstri | |
42 | 41 29 | sstri | |
43 | id | |
|
44 | 30 42 43 | mp2an | |
45 | 1 | elexi | |
46 | 45 | dmex | |
47 | 45 | rnex | |
48 | 46 47 | unex | |
49 | 48 48 | xpex | |
50 | 45 49 | unex | |
51 | id | |
|
52 | 51 51 | coeq12d | |
53 | 52 51 | sseq12d | |
54 | dmeq | |
|
55 | rneq | |
|
56 | 54 55 | uneq12d | |
57 | 56 | reseq2d | |
58 | 57 51 | sseq12d | |
59 | 53 58 | anbi12d | |
60 | 59 | cleq2lem | |
61 | 50 60 | spcev | |
62 | intexab | |
|
63 | 61 62 | sylib | |
64 | 2 44 63 | mp2an | |