Metamath Proof Explorer


Theorem rtrclexi

Description: The reflexive-transitive closure of a set exists. (Contributed by RP, 27-Oct-2020)

Ref Expression
Hypothesis rtrclexi.1 AV
Assertion rtrclexi x|AxxxxIdomxranxxV

Proof

Step Hyp Ref Expression
1 rtrclexi.1 AV
2 ssun1 AAdomAranA×domAranA
3 coundir AdomAranA×domAranAAdomAranA×domAranA=AAdomAranA×domAranAdomAranA×domAranAAdomAranA×domAranA
4 coundi AAdomAranA×domAranA=AAAdomAranA×domAranA
5 cossxp AAdomA×ranA
6 ssun1 domAdomAranA
7 ssun2 ranAdomAranA
8 xpss12 domAdomAranAranAdomAranAdomA×ranAdomAranA×domAranA
9 6 7 8 mp2an domA×ranAdomAranA×domAranA
10 5 9 sstri AAdomAranA×domAranA
11 cossxp AdomAranA×domAranAdomdomAranA×domAranA×ranA
12 dmxpss domdomAranA×domAranAdomAranA
13 xpss12 domdomAranA×domAranAdomAranAranAdomAranAdomdomAranA×domAranA×ranAdomAranA×domAranA
14 12 7 13 mp2an domdomAranA×domAranA×ranAdomAranA×domAranA
15 11 14 sstri AdomAranA×domAranAdomAranA×domAranA
16 10 15 unssi AAAdomAranA×domAranAdomAranA×domAranA
17 4 16 eqsstri AAdomAranA×domAranAdomAranA×domAranA
18 coundi domAranA×domAranAAdomAranA×domAranA=domAranA×domAranAAdomAranA×domAranAdomAranA×domAranA
19 cossxp domAranA×domAranAAdomA×randomAranA×domAranA
20 rnxpss randomAranA×domAranAdomAranA
21 xpss12 domAdomAranArandomAranA×domAranAdomAranAdomA×randomAranA×domAranAdomAranA×domAranA
22 6 20 21 mp2an domA×randomAranA×domAranAdomAranA×domAranA
23 19 22 sstri domAranA×domAranAAdomAranA×domAranA
24 xpidtr domAranA×domAranAdomAranA×domAranAdomAranA×domAranA
25 23 24 unssi domAranA×domAranAAdomAranA×domAranAdomAranA×domAranAdomAranA×domAranA
26 18 25 eqsstri domAranA×domAranAAdomAranA×domAranAdomAranA×domAranA
27 17 26 unssi AAdomAranA×domAranAdomAranA×domAranAAdomAranA×domAranAdomAranA×domAranA
28 3 27 eqsstri AdomAranA×domAranAAdomAranA×domAranAdomAranA×domAranA
29 ssun2 domAranA×domAranAAdomAranA×domAranA
30 28 29 sstri AdomAranA×domAranAAdomAranA×domAranAAdomAranA×domAranA
31 dmun domAdomAranA×domAranA=domAdomdomAranA×domAranA
32 6 12 unssi domAdomdomAranA×domAranAdomAranA
33 31 32 eqsstri domAdomAranA×domAranAdomAranA
34 rnun ranAdomAranA×domAranA=ranArandomAranA×domAranA
35 7 20 unssi ranArandomAranA×domAranAdomAranA
36 34 35 eqsstri ranAdomAranA×domAranAdomAranA
37 33 36 unssi domAdomAranA×domAranAranAdomAranA×domAranAdomAranA
38 ssres2 domAdomAranA×domAranAranAdomAranA×domAranAdomAranAIdomAdomAranA×domAranAranAdomAranA×domAranAIdomAranA
39 37 38 ax-mp IdomAdomAranA×domAranAranAdomAranA×domAranAIdomAranA
40 idssxp IdomAranAdomAranA×domAranA
41 39 40 sstri IdomAdomAranA×domAranAranAdomAranA×domAranAdomAranA×domAranA
42 41 29 sstri IdomAdomAranA×domAranAranAdomAranA×domAranAAdomAranA×domAranA
43 id AdomAranA×domAranAAdomAranA×domAranAAdomAranA×domAranAIdomAdomAranA×domAranAranAdomAranA×domAranAAdomAranA×domAranAAdomAranA×domAranAAdomAranA×domAranAAdomAranA×domAranAIdomAdomAranA×domAranAranAdomAranA×domAranAAdomAranA×domAranA
44 30 42 43 mp2an AdomAranA×domAranAAdomAranA×domAranAAdomAranA×domAranAIdomAdomAranA×domAranAranAdomAranA×domAranAAdomAranA×domAranA
45 1 elexi AV
46 45 dmex domAV
47 45 rnex ranAV
48 46 47 unex domAranAV
49 48 48 xpex domAranA×domAranAV
50 45 49 unex AdomAranA×domAranAV
51 id x=AdomAranA×domAranAx=AdomAranA×domAranA
52 51 51 coeq12d x=AdomAranA×domAranAxx=AdomAranA×domAranAAdomAranA×domAranA
53 52 51 sseq12d x=AdomAranA×domAranAxxxAdomAranA×domAranAAdomAranA×domAranAAdomAranA×domAranA
54 dmeq x=AdomAranA×domAranAdomx=domAdomAranA×domAranA
55 rneq x=AdomAranA×domAranAranx=ranAdomAranA×domAranA
56 54 55 uneq12d x=AdomAranA×domAranAdomxranx=domAdomAranA×domAranAranAdomAranA×domAranA
57 56 reseq2d x=AdomAranA×domAranAIdomxranx=IdomAdomAranA×domAranAranAdomAranA×domAranA
58 57 51 sseq12d x=AdomAranA×domAranAIdomxranxxIdomAdomAranA×domAranAranAdomAranA×domAranAAdomAranA×domAranA
59 53 58 anbi12d x=AdomAranA×domAranAxxxIdomxranxxAdomAranA×domAranAAdomAranA×domAranAAdomAranA×domAranAIdomAdomAranA×domAranAranAdomAranA×domAranAAdomAranA×domAranA
60 59 cleq2lem x=AdomAranA×domAranAAxxxxIdomxranxxAAdomAranA×domAranAAdomAranA×domAranAAdomAranA×domAranAAdomAranA×domAranAIdomAdomAranA×domAranAranAdomAranA×domAranAAdomAranA×domAranA
61 50 60 spcev AAdomAranA×domAranAAdomAranA×domAranAAdomAranA×domAranAAdomAranA×domAranAIdomAdomAranA×domAranAranAdomAranA×domAranAAdomAranA×domAranAxAxxxxIdomxranxx
62 intexab xAxxxxIdomxranxxx|AxxxxIdomxranxxV
63 61 62 sylib AAdomAranA×domAranAAdomAranA×domAranAAdomAranA×domAranAAdomAranA×domAranAIdomAdomAranA×domAranAranAdomAranA×domAranAAdomAranA×domAranAx|AxxxxIdomxranxxV
64 2 44 63 mp2an x|AxxxxIdomxranxxV