Metamath Proof Explorer


Theorem dmun

Description: The domain of a union is the union of domains. Exercise 56(a) of Enderton p. 65. (Contributed by NM, 12-Aug-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion dmun dom A B = dom A dom B

Proof

Step Hyp Ref Expression
1 breq1 y = z y A x z A x
2 1 exbidv y = z x y A x x z A x
3 breq1 y = z y B x z B x
4 3 exbidv y = z x y B x x z B x
5 2 4 unabw y | x y A x y | x y B x = z | x z A x x z B x
6 brun z A B x z A x z B x
7 6 exbii x z A B x x z A x z B x
8 19.43 x z A x z B x x z A x x z B x
9 7 8 bitr2i x z A x x z B x x z A B x
10 9 abbii z | x z A x x z B x = z | x z A B x
11 5 10 eqtri y | x y A x y | x y B x = z | x z A B x
12 df-dm dom A = y | x y A x
13 df-dm dom B = y | x y B x
14 12 13 uneq12i dom A dom B = y | x y A x y | x y B x
15 df-dm dom A B = z | x z A B x
16 11 14 15 3eqtr4ri dom A B = dom A dom B