Metamath Proof Explorer


Theorem dmun

Description: The domain of a union is the union of domains. Exercise 56(a) of Enderton p. 65. (Contributed by NM, 12-Aug-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion dmun domAB=domAdomB

Proof

Step Hyp Ref Expression
1 unab y|xyAxy|xyBx=y|xyAxxyBx
2 brun yABxyAxyBx
3 2 exbii xyABxxyAxyBx
4 19.43 xyAxyBxxyAxxyBx
5 3 4 bitr2i xyAxxyBxxyABx
6 5 abbii y|xyAxxyBx=y|xyABx
7 1 6 eqtri y|xyAxy|xyBx=y|xyABx
8 df-dm domA=y|xyAx
9 df-dm domB=y|xyBx
10 8 9 uneq12i domAdomB=y|xyAxy|xyBx
11 df-dm domAB=y|xyABx
12 7 10 11 3eqtr4ri domAB=domAdomB