Metamath Proof Explorer


Theorem ssres2

Description: Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion ssres2 ABCACB

Proof

Step Hyp Ref Expression
1 xpss1 ABA×VB×V
2 sslin A×VB×VCA×VCB×V
3 1 2 syl ABCA×VCB×V
4 df-res CA=CA×V
5 df-res CB=CB×V
6 3 4 5 3sstr4g ABCACB