Step |
Hyp |
Ref |
Expression |
1 |
|
rtrclexi.1 |
|- A e. V |
2 |
|
ssun1 |
|- A C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) |
3 |
|
coundir |
|- ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) = ( ( A o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) u. ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) |
4 |
|
coundi |
|- ( A o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) = ( ( A o. A ) u. ( A o. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) |
5 |
|
cossxp |
|- ( A o. A ) C_ ( dom A X. ran A ) |
6 |
|
ssun1 |
|- dom A C_ ( dom A u. ran A ) |
7 |
|
ssun2 |
|- ran A C_ ( dom A u. ran A ) |
8 |
|
xpss12 |
|- ( ( dom A C_ ( dom A u. ran A ) /\ ran A C_ ( dom A u. ran A ) ) -> ( dom A X. ran A ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) |
9 |
6 7 8
|
mp2an |
|- ( dom A X. ran A ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
10 |
5 9
|
sstri |
|- ( A o. A ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
11 |
|
cossxp |
|- ( A o. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) C_ ( dom ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) X. ran A ) |
12 |
|
dmxpss |
|- dom ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) C_ ( dom A u. ran A ) |
13 |
|
xpss12 |
|- ( ( dom ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) C_ ( dom A u. ran A ) /\ ran A C_ ( dom A u. ran A ) ) -> ( dom ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) X. ran A ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) |
14 |
12 7 13
|
mp2an |
|- ( dom ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) X. ran A ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
15 |
11 14
|
sstri |
|- ( A o. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
16 |
10 15
|
unssi |
|- ( ( A o. A ) u. ( A o. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
17 |
4 16
|
eqsstri |
|- ( A o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
18 |
|
coundi |
|- ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) = ( ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. A ) u. ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) |
19 |
|
cossxp |
|- ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. A ) C_ ( dom A X. ran ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) |
20 |
|
rnxpss |
|- ran ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) C_ ( dom A u. ran A ) |
21 |
|
xpss12 |
|- ( ( dom A C_ ( dom A u. ran A ) /\ ran ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) C_ ( dom A u. ran A ) ) -> ( dom A X. ran ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) |
22 |
6 20 21
|
mp2an |
|- ( dom A X. ran ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
23 |
19 22
|
sstri |
|- ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. A ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
24 |
|
xpidtr |
|- ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
25 |
23 24
|
unssi |
|- ( ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. A ) u. ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
26 |
18 25
|
eqsstri |
|- ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
27 |
17 26
|
unssi |
|- ( ( A o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) u. ( ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
28 |
3 27
|
eqsstri |
|- ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
29 |
|
ssun2 |
|- ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) |
30 |
28 29
|
sstri |
|- ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) |
31 |
|
dmun |
|- dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) = ( dom A u. dom ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) |
32 |
6 12
|
unssi |
|- ( dom A u. dom ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) C_ ( dom A u. ran A ) |
33 |
31 32
|
eqsstri |
|- dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) C_ ( dom A u. ran A ) |
34 |
|
rnun |
|- ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) = ( ran A u. ran ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) |
35 |
7 20
|
unssi |
|- ( ran A u. ran ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) C_ ( dom A u. ran A ) |
36 |
34 35
|
eqsstri |
|- ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) C_ ( dom A u. ran A ) |
37 |
33 36
|
unssi |
|- ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( dom A u. ran A ) |
38 |
|
ssres2 |
|- ( ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( dom A u. ran A ) -> ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( _I |` ( dom A u. ran A ) ) ) |
39 |
37 38
|
ax-mp |
|- ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( _I |` ( dom A u. ran A ) ) |
40 |
|
idssxp |
|- ( _I |` ( dom A u. ran A ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
41 |
39 40
|
sstri |
|- ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) |
42 |
41 29
|
sstri |
|- ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) |
43 |
|
id |
|- ( ( ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) -> ( ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) |
44 |
30 42 43
|
mp2an |
|- ( ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) |
45 |
1
|
elexi |
|- A e. _V |
46 |
45
|
dmex |
|- dom A e. _V |
47 |
45
|
rnex |
|- ran A e. _V |
48 |
46 47
|
unex |
|- ( dom A u. ran A ) e. _V |
49 |
48 48
|
xpex |
|- ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) e. _V |
50 |
45 49
|
unex |
|- ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) e. _V |
51 |
|
id |
|- ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) |
52 |
51 51
|
coeq12d |
|- ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> ( x o. x ) = ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) |
53 |
52 51
|
sseq12d |
|- ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> ( ( x o. x ) C_ x <-> ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) |
54 |
|
dmeq |
|- ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> dom x = dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) |
55 |
|
rneq |
|- ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> ran x = ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) |
56 |
54 55
|
uneq12d |
|- ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> ( dom x u. ran x ) = ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) |
57 |
56
|
reseq2d |
|- ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> ( _I |` ( dom x u. ran x ) ) = ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) ) |
58 |
57 51
|
sseq12d |
|- ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> ( ( _I |` ( dom x u. ran x ) ) C_ x <-> ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) |
59 |
53 58
|
anbi12d |
|- ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> ( ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) <-> ( ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) ) |
60 |
59
|
cleq2lem |
|- ( x = ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) -> ( ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) <-> ( A C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) ) ) |
61 |
50 60
|
spcev |
|- ( ( A C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) -> E. x ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) ) |
62 |
|
intexab |
|- ( E. x ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) <-> |^| { x | ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) } e. _V ) |
63 |
61 62
|
sylib |
|- ( ( A C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( ( ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) o. ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) /\ ( _I |` ( dom ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) u. ran ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) C_ ( A u. ( ( dom A u. ran A ) X. ( dom A u. ran A ) ) ) ) ) -> |^| { x | ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) } e. _V ) |
64 |
2 44 63
|
mp2an |
|- |^| { x | ( A C_ x /\ ( ( x o. x ) C_ x /\ ( _I |` ( dom x u. ran x ) ) C_ x ) ) } e. _V |