| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clrellem.y |
|- ( ph -> Y e. _V ) |
| 2 |
|
clrellem.rel |
|- ( ph -> Rel X ) |
| 3 |
|
clrellem.sub |
|- ( x = `' `' Y -> ( ps <-> ch ) ) |
| 4 |
|
clrellem.sup |
|- ( ph -> X C_ Y ) |
| 5 |
|
clrellem.maj |
|- ( ph -> ch ) |
| 6 |
|
cnvexg |
|- ( Y e. _V -> `' Y e. _V ) |
| 7 |
|
cnvexg |
|- ( `' Y e. _V -> `' `' Y e. _V ) |
| 8 |
1 6 7
|
3syl |
|- ( ph -> `' `' Y e. _V ) |
| 9 |
|
dfrel2 |
|- ( Rel X <-> `' `' X = X ) |
| 10 |
2 9
|
sylib |
|- ( ph -> `' `' X = X ) |
| 11 |
|
cnvss |
|- ( X C_ Y -> `' X C_ `' Y ) |
| 12 |
|
cnvss |
|- ( `' X C_ `' Y -> `' `' X C_ `' `' Y ) |
| 13 |
4 11 12
|
3syl |
|- ( ph -> `' `' X C_ `' `' Y ) |
| 14 |
10 13
|
eqsstrrd |
|- ( ph -> X C_ `' `' Y ) |
| 15 |
|
relcnv |
|- Rel `' `' Y |
| 16 |
15
|
a1i |
|- ( ph -> Rel `' `' Y ) |
| 17 |
14 5 16
|
jca31 |
|- ( ph -> ( ( X C_ `' `' Y /\ ch ) /\ Rel `' `' Y ) ) |
| 18 |
3
|
cleq2lem |
|- ( x = `' `' Y -> ( ( X C_ x /\ ps ) <-> ( X C_ `' `' Y /\ ch ) ) ) |
| 19 |
|
releq |
|- ( x = `' `' Y -> ( Rel x <-> Rel `' `' Y ) ) |
| 20 |
18 19
|
anbi12d |
|- ( x = `' `' Y -> ( ( ( X C_ x /\ ps ) /\ Rel x ) <-> ( ( X C_ `' `' Y /\ ch ) /\ Rel `' `' Y ) ) ) |
| 21 |
8 17 20
|
spcedv |
|- ( ph -> E. x ( ( X C_ x /\ ps ) /\ Rel x ) ) |
| 22 |
|
releq |
|- ( y = x -> ( Rel y <-> Rel x ) ) |
| 23 |
22
|
rexab2 |
|- ( E. y e. { x | ( X C_ x /\ ps ) } Rel y <-> E. x ( ( X C_ x /\ ps ) /\ Rel x ) ) |
| 24 |
23
|
biimpri |
|- ( E. x ( ( X C_ x /\ ps ) /\ Rel x ) -> E. y e. { x | ( X C_ x /\ ps ) } Rel y ) |
| 25 |
|
relint |
|- ( E. y e. { x | ( X C_ x /\ ps ) } Rel y -> Rel |^| { x | ( X C_ x /\ ps ) } ) |
| 26 |
21 24 25
|
3syl |
|- ( ph -> Rel |^| { x | ( X C_ x /\ ps ) } ) |