Metamath Proof Explorer


Theorem clrellem

Description: When the property ps holds for a relation substituted for x , then the closure on that property is a relation if the base set is a relation. (Contributed by RP, 30-Jul-2020)

Ref Expression
Hypotheses clrellem.y
|- ( ph -> Y e. _V )
clrellem.rel
|- ( ph -> Rel X )
clrellem.sub
|- ( x = `' `' Y -> ( ps <-> ch ) )
clrellem.sup
|- ( ph -> X C_ Y )
clrellem.maj
|- ( ph -> ch )
Assertion clrellem
|- ( ph -> Rel |^| { x | ( X C_ x /\ ps ) } )

Proof

Step Hyp Ref Expression
1 clrellem.y
 |-  ( ph -> Y e. _V )
2 clrellem.rel
 |-  ( ph -> Rel X )
3 clrellem.sub
 |-  ( x = `' `' Y -> ( ps <-> ch ) )
4 clrellem.sup
 |-  ( ph -> X C_ Y )
5 clrellem.maj
 |-  ( ph -> ch )
6 cnvexg
 |-  ( Y e. _V -> `' Y e. _V )
7 cnvexg
 |-  ( `' Y e. _V -> `' `' Y e. _V )
8 1 6 7 3syl
 |-  ( ph -> `' `' Y e. _V )
9 dfrel2
 |-  ( Rel X <-> `' `' X = X )
10 2 9 sylib
 |-  ( ph -> `' `' X = X )
11 cnvss
 |-  ( X C_ Y -> `' X C_ `' Y )
12 cnvss
 |-  ( `' X C_ `' Y -> `' `' X C_ `' `' Y )
13 4 11 12 3syl
 |-  ( ph -> `' `' X C_ `' `' Y )
14 10 13 eqsstrrd
 |-  ( ph -> X C_ `' `' Y )
15 relcnv
 |-  Rel `' `' Y
16 15 a1i
 |-  ( ph -> Rel `' `' Y )
17 14 5 16 jca31
 |-  ( ph -> ( ( X C_ `' `' Y /\ ch ) /\ Rel `' `' Y ) )
18 3 cleq2lem
 |-  ( x = `' `' Y -> ( ( X C_ x /\ ps ) <-> ( X C_ `' `' Y /\ ch ) ) )
19 releq
 |-  ( x = `' `' Y -> ( Rel x <-> Rel `' `' Y ) )
20 18 19 anbi12d
 |-  ( x = `' `' Y -> ( ( ( X C_ x /\ ps ) /\ Rel x ) <-> ( ( X C_ `' `' Y /\ ch ) /\ Rel `' `' Y ) ) )
21 8 17 20 spcedv
 |-  ( ph -> E. x ( ( X C_ x /\ ps ) /\ Rel x ) )
22 releq
 |-  ( y = x -> ( Rel y <-> Rel x ) )
23 22 rexab2
 |-  ( E. y e. { x | ( X C_ x /\ ps ) } Rel y <-> E. x ( ( X C_ x /\ ps ) /\ Rel x ) )
24 23 biimpri
 |-  ( E. x ( ( X C_ x /\ ps ) /\ Rel x ) -> E. y e. { x | ( X C_ x /\ ps ) } Rel y )
25 relint
 |-  ( E. y e. { x | ( X C_ x /\ ps ) } Rel y -> Rel |^| { x | ( X C_ x /\ ps ) } )
26 21 24 25 3syl
 |-  ( ph -> Rel |^| { x | ( X C_ x /\ ps ) } )