| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clrellem.y |
⊢ ( 𝜑 → 𝑌 ∈ V ) |
| 2 |
|
clrellem.rel |
⊢ ( 𝜑 → Rel 𝑋 ) |
| 3 |
|
clrellem.sub |
⊢ ( 𝑥 = ◡ ◡ 𝑌 → ( 𝜓 ↔ 𝜒 ) ) |
| 4 |
|
clrellem.sup |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑌 ) |
| 5 |
|
clrellem.maj |
⊢ ( 𝜑 → 𝜒 ) |
| 6 |
|
cnvexg |
⊢ ( 𝑌 ∈ V → ◡ 𝑌 ∈ V ) |
| 7 |
|
cnvexg |
⊢ ( ◡ 𝑌 ∈ V → ◡ ◡ 𝑌 ∈ V ) |
| 8 |
1 6 7
|
3syl |
⊢ ( 𝜑 → ◡ ◡ 𝑌 ∈ V ) |
| 9 |
|
dfrel2 |
⊢ ( Rel 𝑋 ↔ ◡ ◡ 𝑋 = 𝑋 ) |
| 10 |
2 9
|
sylib |
⊢ ( 𝜑 → ◡ ◡ 𝑋 = 𝑋 ) |
| 11 |
|
cnvss |
⊢ ( 𝑋 ⊆ 𝑌 → ◡ 𝑋 ⊆ ◡ 𝑌 ) |
| 12 |
|
cnvss |
⊢ ( ◡ 𝑋 ⊆ ◡ 𝑌 → ◡ ◡ 𝑋 ⊆ ◡ ◡ 𝑌 ) |
| 13 |
4 11 12
|
3syl |
⊢ ( 𝜑 → ◡ ◡ 𝑋 ⊆ ◡ ◡ 𝑌 ) |
| 14 |
10 13
|
eqsstrrd |
⊢ ( 𝜑 → 𝑋 ⊆ ◡ ◡ 𝑌 ) |
| 15 |
|
relcnv |
⊢ Rel ◡ ◡ 𝑌 |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → Rel ◡ ◡ 𝑌 ) |
| 17 |
14 5 16
|
jca31 |
⊢ ( 𝜑 → ( ( 𝑋 ⊆ ◡ ◡ 𝑌 ∧ 𝜒 ) ∧ Rel ◡ ◡ 𝑌 ) ) |
| 18 |
3
|
cleq2lem |
⊢ ( 𝑥 = ◡ ◡ 𝑌 → ( ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ↔ ( 𝑋 ⊆ ◡ ◡ 𝑌 ∧ 𝜒 ) ) ) |
| 19 |
|
releq |
⊢ ( 𝑥 = ◡ ◡ 𝑌 → ( Rel 𝑥 ↔ Rel ◡ ◡ 𝑌 ) ) |
| 20 |
18 19
|
anbi12d |
⊢ ( 𝑥 = ◡ ◡ 𝑌 → ( ( ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ∧ Rel 𝑥 ) ↔ ( ( 𝑋 ⊆ ◡ ◡ 𝑌 ∧ 𝜒 ) ∧ Rel ◡ ◡ 𝑌 ) ) ) |
| 21 |
8 17 20
|
spcedv |
⊢ ( 𝜑 → ∃ 𝑥 ( ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ∧ Rel 𝑥 ) ) |
| 22 |
|
releq |
⊢ ( 𝑦 = 𝑥 → ( Rel 𝑦 ↔ Rel 𝑥 ) ) |
| 23 |
22
|
rexab2 |
⊢ ( ∃ 𝑦 ∈ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) } Rel 𝑦 ↔ ∃ 𝑥 ( ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ∧ Rel 𝑥 ) ) |
| 24 |
23
|
biimpri |
⊢ ( ∃ 𝑥 ( ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) ∧ Rel 𝑥 ) → ∃ 𝑦 ∈ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) } Rel 𝑦 ) |
| 25 |
|
relint |
⊢ ( ∃ 𝑦 ∈ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) } Rel 𝑦 → Rel ∩ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) } ) |
| 26 |
21 24 25
|
3syl |
⊢ ( 𝜑 → Rel ∩ { 𝑥 ∣ ( 𝑋 ⊆ 𝑥 ∧ 𝜓 ) } ) |