Metamath Proof Explorer


Theorem clrellem

Description: When the property ps holds for a relation substituted for x , then the closure on that property is a relation if the base set is a relation. (Contributed by RP, 30-Jul-2020)

Ref Expression
Hypotheses clrellem.y ( 𝜑𝑌 ∈ V )
clrellem.rel ( 𝜑 → Rel 𝑋 )
clrellem.sub ( 𝑥 = 𝑌 → ( 𝜓𝜒 ) )
clrellem.sup ( 𝜑𝑋𝑌 )
clrellem.maj ( 𝜑𝜒 )
Assertion clrellem ( 𝜑 → Rel { 𝑥 ∣ ( 𝑋𝑥𝜓 ) } )

Proof

Step Hyp Ref Expression
1 clrellem.y ( 𝜑𝑌 ∈ V )
2 clrellem.rel ( 𝜑 → Rel 𝑋 )
3 clrellem.sub ( 𝑥 = 𝑌 → ( 𝜓𝜒 ) )
4 clrellem.sup ( 𝜑𝑋𝑌 )
5 clrellem.maj ( 𝜑𝜒 )
6 cnvexg ( 𝑌 ∈ V → 𝑌 ∈ V )
7 cnvexg ( 𝑌 ∈ V → 𝑌 ∈ V )
8 1 6 7 3syl ( 𝜑 𝑌 ∈ V )
9 dfrel2 ( Rel 𝑋 𝑋 = 𝑋 )
10 2 9 sylib ( 𝜑 𝑋 = 𝑋 )
11 cnvss ( 𝑋𝑌 𝑋 𝑌 )
12 cnvss ( 𝑋 𝑌 𝑋 𝑌 )
13 4 11 12 3syl ( 𝜑 𝑋 𝑌 )
14 10 13 eqsstrrd ( 𝜑𝑋 𝑌 )
15 relcnv Rel 𝑌
16 15 a1i ( 𝜑 → Rel 𝑌 )
17 14 5 16 jca31 ( 𝜑 → ( ( 𝑋 𝑌𝜒 ) ∧ Rel 𝑌 ) )
18 3 cleq2lem ( 𝑥 = 𝑌 → ( ( 𝑋𝑥𝜓 ) ↔ ( 𝑋 𝑌𝜒 ) ) )
19 releq ( 𝑥 = 𝑌 → ( Rel 𝑥 ↔ Rel 𝑌 ) )
20 18 19 anbi12d ( 𝑥 = 𝑌 → ( ( ( 𝑋𝑥𝜓 ) ∧ Rel 𝑥 ) ↔ ( ( 𝑋 𝑌𝜒 ) ∧ Rel 𝑌 ) ) )
21 8 17 20 spcedv ( 𝜑 → ∃ 𝑥 ( ( 𝑋𝑥𝜓 ) ∧ Rel 𝑥 ) )
22 releq ( 𝑦 = 𝑥 → ( Rel 𝑦 ↔ Rel 𝑥 ) )
23 22 rexab2 ( ∃ 𝑦 ∈ { 𝑥 ∣ ( 𝑋𝑥𝜓 ) } Rel 𝑦 ↔ ∃ 𝑥 ( ( 𝑋𝑥𝜓 ) ∧ Rel 𝑥 ) )
24 23 biimpri ( ∃ 𝑥 ( ( 𝑋𝑥𝜓 ) ∧ Rel 𝑥 ) → ∃ 𝑦 ∈ { 𝑥 ∣ ( 𝑋𝑥𝜓 ) } Rel 𝑦 )
25 relint ( ∃ 𝑦 ∈ { 𝑥 ∣ ( 𝑋𝑥𝜓 ) } Rel 𝑦 → Rel { 𝑥 ∣ ( 𝑋𝑥𝜓 ) } )
26 21 24 25 3syl ( 𝜑 → Rel { 𝑥 ∣ ( 𝑋𝑥𝜓 ) } )