Description: The intersection of a class is a relation if at least one member is a relation. (Contributed by NM, 8-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relint | |- ( E. x e. A Rel x -> Rel |^| A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reliin | |- ( E. x e. A Rel x -> Rel |^|_ x e. A x ) |
|
| 2 | intiin | |- |^| A = |^|_ x e. A x |
|
| 3 | 2 | releqi | |- ( Rel |^| A <-> Rel |^|_ x e. A x ) |
| 4 | 1 3 | sylibr | |- ( E. x e. A Rel x -> Rel |^| A ) |