Metamath Proof Explorer


Theorem unss

Description: The union of two subclasses is a subclass. Theorem 27 of Suppes p. 27 and its converse. (Contributed by NM, 11-Jun-2004)

Ref Expression
Assertion unss ACBCABC

Proof

Step Hyp Ref Expression
1 dfss2 ABCxxABxC
2 19.26 xxAxCxBxCxxAxCxxBxC
3 elunant xABxCxAxCxBxC
4 3 albii xxABxCxxAxCxBxC
5 dfss2 ACxxAxC
6 dfss2 BCxxBxC
7 5 6 anbi12i ACBCxxAxCxxBxC
8 2 4 7 3bitr4i xxABxCACBC
9 1 8 bitr2i ACBCABC