Step |
Hyp |
Ref |
Expression |
1 |
|
df-rtrcl |
⊢ t* = ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
2 |
|
ancom |
⊢ ( ( ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ∧ ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ) ↔ ( ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) |
3 |
2
|
anbi2i |
⊢ ( ( 𝑥 ⊆ 𝑦 ∧ ( ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ∧ ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ) ) ↔ ( 𝑥 ⊆ 𝑦 ∧ ( ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) ) |
4 |
3
|
abbii |
⊢ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ∧ ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ) ) } = { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } |
5 |
4
|
inteqi |
⊢ ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ∧ ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ) ) } = ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } |
6 |
5
|
mpteq2i |
⊢ ( 𝑥 ∈ V ↦ ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ∧ ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ) ) } ) = ( 𝑥 ∈ V ↦ ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } ) |
7 |
|
vex |
⊢ 𝑥 ∈ V |
8 |
7
|
rtrclexi |
⊢ ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } ∈ V |
9 |
8
|
a1i |
⊢ ( 𝑥 ∈ V → ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } ∈ V ) |
10 |
|
dmexg |
⊢ ( 𝑥 ∈ V → dom 𝑥 ∈ V ) |
11 |
|
rnexg |
⊢ ( 𝑥 ∈ V → ran 𝑥 ∈ V ) |
12 |
|
unexg |
⊢ ( ( dom 𝑥 ∈ V ∧ ran 𝑥 ∈ V ) → ( dom 𝑥 ∪ ran 𝑥 ) ∈ V ) |
13 |
10 11 12
|
syl2anc |
⊢ ( 𝑥 ∈ V → ( dom 𝑥 ∪ ran 𝑥 ) ∈ V ) |
14 |
|
resiexg |
⊢ ( ( dom 𝑥 ∪ ran 𝑥 ) ∈ V → ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∈ V ) |
15 |
7 13 14
|
mp2b |
⊢ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∈ V |
16 |
7 15
|
unex |
⊢ ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ∈ V |
17 |
16
|
trclexi |
⊢ ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ∈ V |
18 |
17
|
a1i |
⊢ ( 𝑥 ∈ V → ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ∈ V ) |
19 |
|
simpr |
⊢ ( ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) → ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) |
20 |
19
|
cotrintab |
⊢ ( ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ∘ ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) ⊆ ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } |
21 |
20
|
a1i |
⊢ ( 𝑥 ∈ V → ( ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ∘ ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) ⊆ ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
22 |
7
|
dmex |
⊢ dom 𝑥 ∈ V |
23 |
7
|
rnex |
⊢ ran 𝑥 ∈ V |
24 |
12
|
resiexd |
⊢ ( ( dom 𝑥 ∈ V ∧ ran 𝑥 ∈ V ) → ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∈ V ) |
25 |
22 23 24
|
mp2an |
⊢ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ∈ V |
26 |
7 25
|
unex |
⊢ ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ∈ V |
27 |
|
dmtrcl |
⊢ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ∈ V → dom ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } = dom ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ) |
28 |
26 27
|
ax-mp |
⊢ dom ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } = dom ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) |
29 |
|
dmun |
⊢ dom ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) = ( dom 𝑥 ∪ dom ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) |
30 |
|
dmresi |
⊢ dom ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) = ( dom 𝑥 ∪ ran 𝑥 ) |
31 |
30
|
uneq2i |
⊢ ( dom 𝑥 ∪ dom ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) = ( dom 𝑥 ∪ ( dom 𝑥 ∪ ran 𝑥 ) ) |
32 |
|
ssun1 |
⊢ dom 𝑥 ⊆ ( dom 𝑥 ∪ ran 𝑥 ) |
33 |
|
ssequn1 |
⊢ ( dom 𝑥 ⊆ ( dom 𝑥 ∪ ran 𝑥 ) ↔ ( dom 𝑥 ∪ ( dom 𝑥 ∪ ran 𝑥 ) ) = ( dom 𝑥 ∪ ran 𝑥 ) ) |
34 |
32 33
|
mpbi |
⊢ ( dom 𝑥 ∪ ( dom 𝑥 ∪ ran 𝑥 ) ) = ( dom 𝑥 ∪ ran 𝑥 ) |
35 |
29 31 34
|
3eqtri |
⊢ dom ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) = ( dom 𝑥 ∪ ran 𝑥 ) |
36 |
28 35
|
eqtri |
⊢ dom ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } = ( dom 𝑥 ∪ ran 𝑥 ) |
37 |
|
rntrcl |
⊢ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ∈ V → ran ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } = ran ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ) |
38 |
26 37
|
ax-mp |
⊢ ran ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } = ran ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) |
39 |
|
rnun |
⊢ ran ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) = ( ran 𝑥 ∪ ran ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) |
40 |
|
rnresi |
⊢ ran ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) = ( dom 𝑥 ∪ ran 𝑥 ) |
41 |
40
|
uneq2i |
⊢ ( ran 𝑥 ∪ ran ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) = ( ran 𝑥 ∪ ( dom 𝑥 ∪ ran 𝑥 ) ) |
42 |
|
ssun2 |
⊢ ran 𝑥 ⊆ ( dom 𝑥 ∪ ran 𝑥 ) |
43 |
|
ssequn1 |
⊢ ( ran 𝑥 ⊆ ( dom 𝑥 ∪ ran 𝑥 ) ↔ ( ran 𝑥 ∪ ( dom 𝑥 ∪ ran 𝑥 ) ) = ( dom 𝑥 ∪ ran 𝑥 ) ) |
44 |
42 43
|
mpbi |
⊢ ( ran 𝑥 ∪ ( dom 𝑥 ∪ ran 𝑥 ) ) = ( dom 𝑥 ∪ ran 𝑥 ) |
45 |
39 41 44
|
3eqtri |
⊢ ran ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) = ( dom 𝑥 ∪ ran 𝑥 ) |
46 |
38 45
|
eqtri |
⊢ ran ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } = ( dom 𝑥 ∪ ran 𝑥 ) |
47 |
36 46
|
uneq12i |
⊢ ( dom ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ∪ ran ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) = ( ( dom 𝑥 ∪ ran 𝑥 ) ∪ ( dom 𝑥 ∪ ran 𝑥 ) ) |
48 |
|
unidm |
⊢ ( ( dom 𝑥 ∪ ran 𝑥 ) ∪ ( dom 𝑥 ∪ ran 𝑥 ) ) = ( dom 𝑥 ∪ ran 𝑥 ) |
49 |
47 48
|
eqtri |
⊢ ( dom ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ∪ ran ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) = ( dom 𝑥 ∪ ran 𝑥 ) |
50 |
49
|
reseq2i |
⊢ ( I ↾ ( dom ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ∪ ran ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) ) = ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) |
51 |
|
ssun2 |
⊢ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) |
52 |
|
ssmin |
⊢ ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } |
53 |
51 52
|
sstri |
⊢ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } |
54 |
50 53
|
eqsstri |
⊢ ( I ↾ ( dom ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ∪ ran ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) ) ⊆ ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } |
55 |
54
|
a1i |
⊢ ( 𝑥 ∈ V → ( I ↾ ( dom ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ∪ ran ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) ) ⊆ ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
56 |
|
simprl |
⊢ ( ( 𝑥 ⊆ 𝑦 ∧ ( ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) → ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ) |
57 |
56
|
cotrintab |
⊢ ( ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } ∘ ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } ) ⊆ ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } |
58 |
57
|
a1i |
⊢ ( 𝑥 ∈ V → ( ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } ∘ ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } ) ⊆ ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } ) |
59 |
|
id |
⊢ ( 𝑦 = ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } → 𝑦 = ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
60 |
59 59
|
coeq12d |
⊢ ( 𝑦 = ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } → ( 𝑦 ∘ 𝑦 ) = ( ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ∘ ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) ) |
61 |
60 59
|
sseq12d |
⊢ ( 𝑦 = ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } → ( ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ↔ ( ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ∘ ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) ⊆ ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) ) |
62 |
|
dmeq |
⊢ ( 𝑦 = ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } → dom 𝑦 = dom ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
63 |
|
rneq |
⊢ ( 𝑦 = ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } → ran 𝑦 = ran ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
64 |
62 63
|
uneq12d |
⊢ ( 𝑦 = ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } → ( dom 𝑦 ∪ ran 𝑦 ) = ( dom ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ∪ ran ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) ) |
65 |
64
|
reseq2d |
⊢ ( 𝑦 = ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } → ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) = ( I ↾ ( dom ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ∪ ran ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) ) ) |
66 |
65 59
|
sseq12d |
⊢ ( 𝑦 = ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } → ( ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ↔ ( I ↾ ( dom ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ∪ ran ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) ) ⊆ ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) ) |
67 |
|
id |
⊢ ( 𝑧 = ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } → 𝑧 = ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } ) |
68 |
67 67
|
coeq12d |
⊢ ( 𝑧 = ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } → ( 𝑧 ∘ 𝑧 ) = ( ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } ∘ ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } ) ) |
69 |
68 67
|
sseq12d |
⊢ ( 𝑧 = ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } → ( ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ↔ ( ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } ∘ ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } ) ⊆ ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } ) ) |
70 |
9 18 21 55 58 61 66 69
|
mptrcllem |
⊢ ( 𝑥 ∈ V ↦ ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ∧ ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ) ) } ) = ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
71 |
|
df-3an |
⊢ ( ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) ↔ ( ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ) ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) ) |
72 |
|
ancom |
⊢ ( ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ) ↔ ( 𝑥 ⊆ 𝑧 ∧ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ) ) |
73 |
|
unss |
⊢ ( ( 𝑥 ⊆ 𝑧 ∧ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ) ↔ ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ) |
74 |
72 73
|
bitri |
⊢ ( ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ) ↔ ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ) |
75 |
74
|
anbi1i |
⊢ ( ( ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ) ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) ↔ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) ) |
76 |
71 75
|
bitr2i |
⊢ ( ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) ↔ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) ) |
77 |
76
|
abbii |
⊢ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } = { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } |
78 |
77
|
inteqi |
⊢ ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } = ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } |
79 |
78
|
mpteq2i |
⊢ ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( 𝑥 ∪ ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ) ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) = ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
80 |
6 70 79
|
3eqtri |
⊢ ( 𝑥 ∈ V ↦ ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ∧ ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ) ) } ) = ( 𝑥 ∈ V ↦ ∩ { 𝑧 ∣ ( ( I ↾ ( dom 𝑥 ∪ ran 𝑥 ) ) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ) } ) |
81 |
1 80
|
eqtr4i |
⊢ t* = ( 𝑥 ∈ V ↦ ∩ { 𝑦 ∣ ( 𝑥 ⊆ 𝑦 ∧ ( ( I ↾ ( dom 𝑦 ∪ ran 𝑦 ) ) ⊆ 𝑦 ∧ ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ) ) } ) |