Metamath Proof Explorer


Theorem resiexg

Description: The existence of a restricted identity function, proved without using the Axiom of Replacement (unlike resfunexg ). (Contributed by NM, 13-Jan-2007) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Assertion resiexg ( 𝐴𝑉 → ( I ↾ 𝐴 ) ∈ V )

Proof

Step Hyp Ref Expression
1 idssxp ( I ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐴 )
2 sqxpexg ( 𝐴𝑉 → ( 𝐴 × 𝐴 ) ∈ V )
3 ssexg ( ( ( I ↾ 𝐴 ) ⊆ ( 𝐴 × 𝐴 ) ∧ ( 𝐴 × 𝐴 ) ∈ V ) → ( I ↾ 𝐴 ) ∈ V )
4 1 2 3 sylancr ( 𝐴𝑉 → ( I ↾ 𝐴 ) ∈ V )