Metamath Proof Explorer


Theorem resiexg

Description: The existence of a restricted identity function, proved without using the Axiom of Replacement (unlike resfunexg ). (Contributed by NM, 13-Jan-2007) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Assertion resiexg
|- ( A e. V -> ( _I |` A ) e. _V )

Proof

Step Hyp Ref Expression
1 idssxp
 |-  ( _I |` A ) C_ ( A X. A )
2 sqxpexg
 |-  ( A e. V -> ( A X. A ) e. _V )
3 ssexg
 |-  ( ( ( _I |` A ) C_ ( A X. A ) /\ ( A X. A ) e. _V ) -> ( _I |` A ) e. _V )
4 1 2 3 sylancr
 |-  ( A e. V -> ( _I |` A ) e. _V )