Description: The existence of a restricted identity function, proved without using the Axiom of Replacement (unlike resfunexg ). (Contributed by NM, 13-Jan-2007) (Proof shortened by Peter Mazsa, 2-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | resiexg | |- ( A e. V -> ( _I |` A ) e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idssxp | |- ( _I |` A ) C_ ( A X. A ) |
|
2 | sqxpexg | |- ( A e. V -> ( A X. A ) e. _V ) |
|
3 | ssexg | |- ( ( ( _I |` A ) C_ ( A X. A ) /\ ( A X. A ) e. _V ) -> ( _I |` A ) e. _V ) |
|
4 | 1 2 3 | sylancr | |- ( A e. V -> ( _I |` A ) e. _V ) |