Description: The image of a set is a set. Theorem 3.17 of Monk1 p. 39. (Contributed by NM, 24-Jul-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | imaexg | |- ( A e. V -> ( A " B ) e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn | |- ( A " B ) C_ ran A |
|
2 | rnexg | |- ( A e. V -> ran A e. _V ) |
|
3 | ssexg | |- ( ( ( A " B ) C_ ran A /\ ran A e. _V ) -> ( A " B ) e. _V ) |
|
4 | 1 2 3 | sylancr | |- ( A e. V -> ( A " B ) e. _V ) |