Metamath Proof Explorer


Theorem sqxpexg

Description: The Cartesian square of a set is a set. (Contributed by AV, 13-Jan-2020)

Ref Expression
Assertion sqxpexg
|- ( A e. V -> ( A X. A ) e. _V )

Proof

Step Hyp Ref Expression
1 xpexg
 |-  ( ( A e. V /\ A e. V ) -> ( A X. A ) e. _V )
2 1 anidms
 |-  ( A e. V -> ( A X. A ) e. _V )