| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							funres | 
							⊢ ( Fun  𝐴  →  Fun  ( 𝐴  ↾  𝐵 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( Fun  𝐴  ∧  𝐵  ∈  𝐶 )  →  Fun  ( 𝐴  ↾  𝐵 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							funfnd | 
							⊢ ( ( Fun  𝐴  ∧  𝐵  ∈  𝐶 )  →  ( 𝐴  ↾  𝐵 )  Fn  dom  ( 𝐴  ↾  𝐵 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							dffn5 | 
							⊢ ( ( 𝐴  ↾  𝐵 )  Fn  dom  ( 𝐴  ↾  𝐵 )  ↔  ( 𝐴  ↾  𝐵 )  =  ( 𝑥  ∈  dom  ( 𝐴  ↾  𝐵 )  ↦  ( ( 𝐴  ↾  𝐵 ) ‘ 𝑥 ) ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							sylib | 
							⊢ ( ( Fun  𝐴  ∧  𝐵  ∈  𝐶 )  →  ( 𝐴  ↾  𝐵 )  =  ( 𝑥  ∈  dom  ( 𝐴  ↾  𝐵 )  ↦  ( ( 𝐴  ↾  𝐵 ) ‘ 𝑥 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							fvex | 
							⊢ ( ( 𝐴  ↾  𝐵 ) ‘ 𝑥 )  ∈  V  | 
						
						
							| 7 | 
							
								6
							 | 
							fnasrn | 
							⊢ ( 𝑥  ∈  dom  ( 𝐴  ↾  𝐵 )  ↦  ( ( 𝐴  ↾  𝐵 ) ‘ 𝑥 ) )  =  ran  ( 𝑥  ∈  dom  ( 𝐴  ↾  𝐵 )  ↦  〈 𝑥 ,  ( ( 𝐴  ↾  𝐵 ) ‘ 𝑥 ) 〉 )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							eqtrdi | 
							⊢ ( ( Fun  𝐴  ∧  𝐵  ∈  𝐶 )  →  ( 𝐴  ↾  𝐵 )  =  ran  ( 𝑥  ∈  dom  ( 𝐴  ↾  𝐵 )  ↦  〈 𝑥 ,  ( ( 𝐴  ↾  𝐵 ) ‘ 𝑥 ) 〉 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							opex | 
							⊢ 〈 𝑥 ,  ( ( 𝐴  ↾  𝐵 ) ‘ 𝑥 ) 〉  ∈  V  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  dom  ( 𝐴  ↾  𝐵 )  ↦  〈 𝑥 ,  ( ( 𝐴  ↾  𝐵 ) ‘ 𝑥 ) 〉 )  =  ( 𝑥  ∈  dom  ( 𝐴  ↾  𝐵 )  ↦  〈 𝑥 ,  ( ( 𝐴  ↾  𝐵 ) ‘ 𝑥 ) 〉 )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							dmmpti | 
							⊢ dom  ( 𝑥  ∈  dom  ( 𝐴  ↾  𝐵 )  ↦  〈 𝑥 ,  ( ( 𝐴  ↾  𝐵 ) ‘ 𝑥 ) 〉 )  =  dom  ( 𝐴  ↾  𝐵 )  | 
						
						
							| 12 | 
							
								11
							 | 
							imaeq2i | 
							⊢ ( ( 𝑥  ∈  dom  ( 𝐴  ↾  𝐵 )  ↦  〈 𝑥 ,  ( ( 𝐴  ↾  𝐵 ) ‘ 𝑥 ) 〉 )  “  dom  ( 𝑥  ∈  dom  ( 𝐴  ↾  𝐵 )  ↦  〈 𝑥 ,  ( ( 𝐴  ↾  𝐵 ) ‘ 𝑥 ) 〉 ) )  =  ( ( 𝑥  ∈  dom  ( 𝐴  ↾  𝐵 )  ↦  〈 𝑥 ,  ( ( 𝐴  ↾  𝐵 ) ‘ 𝑥 ) 〉 )  “  dom  ( 𝐴  ↾  𝐵 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							imadmrn | 
							⊢ ( ( 𝑥  ∈  dom  ( 𝐴  ↾  𝐵 )  ↦  〈 𝑥 ,  ( ( 𝐴  ↾  𝐵 ) ‘ 𝑥 ) 〉 )  “  dom  ( 𝑥  ∈  dom  ( 𝐴  ↾  𝐵 )  ↦  〈 𝑥 ,  ( ( 𝐴  ↾  𝐵 ) ‘ 𝑥 ) 〉 ) )  =  ran  ( 𝑥  ∈  dom  ( 𝐴  ↾  𝐵 )  ↦  〈 𝑥 ,  ( ( 𝐴  ↾  𝐵 ) ‘ 𝑥 ) 〉 )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							eqtr3i | 
							⊢ ( ( 𝑥  ∈  dom  ( 𝐴  ↾  𝐵 )  ↦  〈 𝑥 ,  ( ( 𝐴  ↾  𝐵 ) ‘ 𝑥 ) 〉 )  “  dom  ( 𝐴  ↾  𝐵 ) )  =  ran  ( 𝑥  ∈  dom  ( 𝐴  ↾  𝐵 )  ↦  〈 𝑥 ,  ( ( 𝐴  ↾  𝐵 ) ‘ 𝑥 ) 〉 )  | 
						
						
							| 15 | 
							
								8 14
							 | 
							eqtr4di | 
							⊢ ( ( Fun  𝐴  ∧  𝐵  ∈  𝐶 )  →  ( 𝐴  ↾  𝐵 )  =  ( ( 𝑥  ∈  dom  ( 𝐴  ↾  𝐵 )  ↦  〈 𝑥 ,  ( ( 𝐴  ↾  𝐵 ) ‘ 𝑥 ) 〉 )  “  dom  ( 𝐴  ↾  𝐵 ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							funmpt | 
							⊢ Fun  ( 𝑥  ∈  dom  ( 𝐴  ↾  𝐵 )  ↦  〈 𝑥 ,  ( ( 𝐴  ↾  𝐵 ) ‘ 𝑥 ) 〉 )  | 
						
						
							| 17 | 
							
								
							 | 
							dmresexg | 
							⊢ ( 𝐵  ∈  𝐶  →  dom  ( 𝐴  ↾  𝐵 )  ∈  V )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantl | 
							⊢ ( ( Fun  𝐴  ∧  𝐵  ∈  𝐶 )  →  dom  ( 𝐴  ↾  𝐵 )  ∈  V )  | 
						
						
							| 19 | 
							
								
							 | 
							funimaexg | 
							⊢ ( ( Fun  ( 𝑥  ∈  dom  ( 𝐴  ↾  𝐵 )  ↦  〈 𝑥 ,  ( ( 𝐴  ↾  𝐵 ) ‘ 𝑥 ) 〉 )  ∧  dom  ( 𝐴  ↾  𝐵 )  ∈  V )  →  ( ( 𝑥  ∈  dom  ( 𝐴  ↾  𝐵 )  ↦  〈 𝑥 ,  ( ( 𝐴  ↾  𝐵 ) ‘ 𝑥 ) 〉 )  “  dom  ( 𝐴  ↾  𝐵 ) )  ∈  V )  | 
						
						
							| 20 | 
							
								16 18 19
							 | 
							sylancr | 
							⊢ ( ( Fun  𝐴  ∧  𝐵  ∈  𝐶 )  →  ( ( 𝑥  ∈  dom  ( 𝐴  ↾  𝐵 )  ↦  〈 𝑥 ,  ( ( 𝐴  ↾  𝐵 ) ‘ 𝑥 ) 〉 )  “  dom  ( 𝐴  ↾  𝐵 ) )  ∈  V )  | 
						
						
							| 21 | 
							
								15 20
							 | 
							eqeltrd | 
							⊢ ( ( Fun  𝐴  ∧  𝐵  ∈  𝐶 )  →  ( 𝐴  ↾  𝐵 )  ∈  V )  |