Step |
Hyp |
Ref |
Expression |
1 |
|
cnvco |
|- `' ( ( A \ `' `' A ) o. B ) = ( `' B o. `' ( A \ `' `' A ) ) |
2 |
|
cnvnonrel |
|- `' ( A \ `' `' A ) = (/) |
3 |
2
|
coeq2i |
|- ( `' B o. `' ( A \ `' `' A ) ) = ( `' B o. (/) ) |
4 |
|
co02 |
|- ( `' B o. (/) ) = (/) |
5 |
1 3 4
|
3eqtri |
|- `' ( ( A \ `' `' A ) o. B ) = (/) |
6 |
5
|
cnveqi |
|- `' `' ( ( A \ `' `' A ) o. B ) = `' (/) |
7 |
|
relco |
|- Rel ( ( A \ `' `' A ) o. B ) |
8 |
|
dfrel2 |
|- ( Rel ( ( A \ `' `' A ) o. B ) <-> `' `' ( ( A \ `' `' A ) o. B ) = ( ( A \ `' `' A ) o. B ) ) |
9 |
7 8
|
mpbi |
|- `' `' ( ( A \ `' `' A ) o. B ) = ( ( A \ `' `' A ) o. B ) |
10 |
|
cnv0 |
|- `' (/) = (/) |
11 |
6 9 10
|
3eqtr3i |
|- ( ( A \ `' `' A ) o. B ) = (/) |