| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnvco |
|- `' ( ( A \ `' `' A ) o. B ) = ( `' B o. `' ( A \ `' `' A ) ) |
| 2 |
|
cnvnonrel |
|- `' ( A \ `' `' A ) = (/) |
| 3 |
2
|
coeq2i |
|- ( `' B o. `' ( A \ `' `' A ) ) = ( `' B o. (/) ) |
| 4 |
|
co02 |
|- ( `' B o. (/) ) = (/) |
| 5 |
1 3 4
|
3eqtri |
|- `' ( ( A \ `' `' A ) o. B ) = (/) |
| 6 |
5
|
cnveqi |
|- `' `' ( ( A \ `' `' A ) o. B ) = `' (/) |
| 7 |
|
relco |
|- Rel ( ( A \ `' `' A ) o. B ) |
| 8 |
|
dfrel2 |
|- ( Rel ( ( A \ `' `' A ) o. B ) <-> `' `' ( ( A \ `' `' A ) o. B ) = ( ( A \ `' `' A ) o. B ) ) |
| 9 |
7 8
|
mpbi |
|- `' `' ( ( A \ `' `' A ) o. B ) = ( ( A \ `' `' A ) o. B ) |
| 10 |
|
cnv0 |
|- `' (/) = (/) |
| 11 |
6 9 10
|
3eqtr3i |
|- ( ( A \ `' `' A ) o. B ) = (/) |