Metamath Proof Explorer


Theorem cononrel1

Description: Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020)

Ref Expression
Assertion cononrel1
|- ( ( A \ `' `' A ) o. B ) = (/)

Proof

Step Hyp Ref Expression
1 cnvco
 |-  `' ( ( A \ `' `' A ) o. B ) = ( `' B o. `' ( A \ `' `' A ) )
2 cnvnonrel
 |-  `' ( A \ `' `' A ) = (/)
3 2 coeq2i
 |-  ( `' B o. `' ( A \ `' `' A ) ) = ( `' B o. (/) )
4 co02
 |-  ( `' B o. (/) ) = (/)
5 1 3 4 3eqtri
 |-  `' ( ( A \ `' `' A ) o. B ) = (/)
6 5 cnveqi
 |-  `' `' ( ( A \ `' `' A ) o. B ) = `' (/)
7 relco
 |-  Rel ( ( A \ `' `' A ) o. B )
8 dfrel2
 |-  ( Rel ( ( A \ `' `' A ) o. B ) <-> `' `' ( ( A \ `' `' A ) o. B ) = ( ( A \ `' `' A ) o. B ) )
9 7 8 mpbi
 |-  `' `' ( ( A \ `' `' A ) o. B ) = ( ( A \ `' `' A ) o. B )
10 cnv0
 |-  `' (/) = (/)
11 6 9 10 3eqtr3i
 |-  ( ( A \ `' `' A ) o. B ) = (/)