Step |
Hyp |
Ref |
Expression |
1 |
|
cnvco |
⊢ ◡ ( ( 𝐴 ∖ ◡ ◡ 𝐴 ) ∘ 𝐵 ) = ( ◡ 𝐵 ∘ ◡ ( 𝐴 ∖ ◡ ◡ 𝐴 ) ) |
2 |
|
cnvnonrel |
⊢ ◡ ( 𝐴 ∖ ◡ ◡ 𝐴 ) = ∅ |
3 |
2
|
coeq2i |
⊢ ( ◡ 𝐵 ∘ ◡ ( 𝐴 ∖ ◡ ◡ 𝐴 ) ) = ( ◡ 𝐵 ∘ ∅ ) |
4 |
|
co02 |
⊢ ( ◡ 𝐵 ∘ ∅ ) = ∅ |
5 |
1 3 4
|
3eqtri |
⊢ ◡ ( ( 𝐴 ∖ ◡ ◡ 𝐴 ) ∘ 𝐵 ) = ∅ |
6 |
5
|
cnveqi |
⊢ ◡ ◡ ( ( 𝐴 ∖ ◡ ◡ 𝐴 ) ∘ 𝐵 ) = ◡ ∅ |
7 |
|
relco |
⊢ Rel ( ( 𝐴 ∖ ◡ ◡ 𝐴 ) ∘ 𝐵 ) |
8 |
|
dfrel2 |
⊢ ( Rel ( ( 𝐴 ∖ ◡ ◡ 𝐴 ) ∘ 𝐵 ) ↔ ◡ ◡ ( ( 𝐴 ∖ ◡ ◡ 𝐴 ) ∘ 𝐵 ) = ( ( 𝐴 ∖ ◡ ◡ 𝐴 ) ∘ 𝐵 ) ) |
9 |
7 8
|
mpbi |
⊢ ◡ ◡ ( ( 𝐴 ∖ ◡ ◡ 𝐴 ) ∘ 𝐵 ) = ( ( 𝐴 ∖ ◡ ◡ 𝐴 ) ∘ 𝐵 ) |
10 |
|
cnv0 |
⊢ ◡ ∅ = ∅ |
11 |
6 9 10
|
3eqtr3i |
⊢ ( ( 𝐴 ∖ ◡ ◡ 𝐴 ) ∘ 𝐵 ) = ∅ |