| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnvco |
⊢ ◡ ( 𝐴 ∘ ( 𝐵 ∖ ◡ ◡ 𝐵 ) ) = ( ◡ ( 𝐵 ∖ ◡ ◡ 𝐵 ) ∘ ◡ 𝐴 ) |
| 2 |
|
cnvnonrel |
⊢ ◡ ( 𝐵 ∖ ◡ ◡ 𝐵 ) = ∅ |
| 3 |
2
|
coeq1i |
⊢ ( ◡ ( 𝐵 ∖ ◡ ◡ 𝐵 ) ∘ ◡ 𝐴 ) = ( ∅ ∘ ◡ 𝐴 ) |
| 4 |
|
co01 |
⊢ ( ∅ ∘ ◡ 𝐴 ) = ∅ |
| 5 |
1 3 4
|
3eqtri |
⊢ ◡ ( 𝐴 ∘ ( 𝐵 ∖ ◡ ◡ 𝐵 ) ) = ∅ |
| 6 |
5
|
cnveqi |
⊢ ◡ ◡ ( 𝐴 ∘ ( 𝐵 ∖ ◡ ◡ 𝐵 ) ) = ◡ ∅ |
| 7 |
|
relco |
⊢ Rel ( 𝐴 ∘ ( 𝐵 ∖ ◡ ◡ 𝐵 ) ) |
| 8 |
|
dfrel2 |
⊢ ( Rel ( 𝐴 ∘ ( 𝐵 ∖ ◡ ◡ 𝐵 ) ) ↔ ◡ ◡ ( 𝐴 ∘ ( 𝐵 ∖ ◡ ◡ 𝐵 ) ) = ( 𝐴 ∘ ( 𝐵 ∖ ◡ ◡ 𝐵 ) ) ) |
| 9 |
7 8
|
mpbi |
⊢ ◡ ◡ ( 𝐴 ∘ ( 𝐵 ∖ ◡ ◡ 𝐵 ) ) = ( 𝐴 ∘ ( 𝐵 ∖ ◡ ◡ 𝐵 ) ) |
| 10 |
|
cnv0 |
⊢ ◡ ∅ = ∅ |
| 11 |
6 9 10
|
3eqtr3i |
⊢ ( 𝐴 ∘ ( 𝐵 ∖ ◡ ◡ 𝐵 ) ) = ∅ |