Metamath Proof Explorer


Theorem cononrel2

Description: Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020)

Ref Expression
Assertion cononrel2 ( 𝐴 ∘ ( 𝐵 𝐵 ) ) = ∅

Proof

Step Hyp Ref Expression
1 cnvco ( 𝐴 ∘ ( 𝐵 𝐵 ) ) = ( ( 𝐵 𝐵 ) ∘ 𝐴 )
2 cnvnonrel ( 𝐵 𝐵 ) = ∅
3 2 coeq1i ( ( 𝐵 𝐵 ) ∘ 𝐴 ) = ( ∅ ∘ 𝐴 )
4 co01 ( ∅ ∘ 𝐴 ) = ∅
5 1 3 4 3eqtri ( 𝐴 ∘ ( 𝐵 𝐵 ) ) = ∅
6 5 cnveqi ( 𝐴 ∘ ( 𝐵 𝐵 ) ) =
7 relco Rel ( 𝐴 ∘ ( 𝐵 𝐵 ) )
8 dfrel2 ( Rel ( 𝐴 ∘ ( 𝐵 𝐵 ) ) ↔ ( 𝐴 ∘ ( 𝐵 𝐵 ) ) = ( 𝐴 ∘ ( 𝐵 𝐵 ) ) )
9 7 8 mpbi ( 𝐴 ∘ ( 𝐵 𝐵 ) ) = ( 𝐴 ∘ ( 𝐵 𝐵 ) )
10 cnv0 ∅ = ∅
11 6 9 10 3eqtr3i ( 𝐴 ∘ ( 𝐵 𝐵 ) ) = ∅