Step |
Hyp |
Ref |
Expression |
1 |
|
cnvco |
⊢ ◡ ( 𝐴 ∘ ( 𝐵 ∖ ◡ ◡ 𝐵 ) ) = ( ◡ ( 𝐵 ∖ ◡ ◡ 𝐵 ) ∘ ◡ 𝐴 ) |
2 |
|
cnvnonrel |
⊢ ◡ ( 𝐵 ∖ ◡ ◡ 𝐵 ) = ∅ |
3 |
2
|
coeq1i |
⊢ ( ◡ ( 𝐵 ∖ ◡ ◡ 𝐵 ) ∘ ◡ 𝐴 ) = ( ∅ ∘ ◡ 𝐴 ) |
4 |
|
co01 |
⊢ ( ∅ ∘ ◡ 𝐴 ) = ∅ |
5 |
1 3 4
|
3eqtri |
⊢ ◡ ( 𝐴 ∘ ( 𝐵 ∖ ◡ ◡ 𝐵 ) ) = ∅ |
6 |
5
|
cnveqi |
⊢ ◡ ◡ ( 𝐴 ∘ ( 𝐵 ∖ ◡ ◡ 𝐵 ) ) = ◡ ∅ |
7 |
|
relco |
⊢ Rel ( 𝐴 ∘ ( 𝐵 ∖ ◡ ◡ 𝐵 ) ) |
8 |
|
dfrel2 |
⊢ ( Rel ( 𝐴 ∘ ( 𝐵 ∖ ◡ ◡ 𝐵 ) ) ↔ ◡ ◡ ( 𝐴 ∘ ( 𝐵 ∖ ◡ ◡ 𝐵 ) ) = ( 𝐴 ∘ ( 𝐵 ∖ ◡ ◡ 𝐵 ) ) ) |
9 |
7 8
|
mpbi |
⊢ ◡ ◡ ( 𝐴 ∘ ( 𝐵 ∖ ◡ ◡ 𝐵 ) ) = ( 𝐴 ∘ ( 𝐵 ∖ ◡ ◡ 𝐵 ) ) |
10 |
|
cnv0 |
⊢ ◡ ∅ = ∅ |
11 |
6 9 10
|
3eqtr3i |
⊢ ( 𝐴 ∘ ( 𝐵 ∖ ◡ ◡ 𝐵 ) ) = ∅ |