Metamath Proof Explorer


Theorem cononrel2

Description: Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020)

Ref Expression
Assertion cononrel2 A B B -1 -1 =

Proof

Step Hyp Ref Expression
1 cnvco A B B -1 -1 -1 = B B -1 -1 -1 A -1
2 cnvnonrel B B -1 -1 -1 =
3 2 coeq1i B B -1 -1 -1 A -1 = A -1
4 co01 A -1 =
5 1 3 4 3eqtri A B B -1 -1 -1 =
6 5 cnveqi A B B -1 -1 -1 -1 = -1
7 relco Rel A B B -1 -1
8 dfrel2 Rel A B B -1 -1 A B B -1 -1 -1 -1 = A B B -1 -1
9 7 8 mpbi A B B -1 -1 -1 -1 = A B B -1 -1
10 cnv0 -1 =
11 6 9 10 3eqtr3i A B B -1 -1 =