Metamath Proof Explorer


Theorem cnvnonrel

Description: The converse of the non-relation part of a class is empty. (Contributed by RP, 18-Oct-2020)

Ref Expression
Assertion cnvnonrel AA-1-1-1=

Proof

Step Hyp Ref Expression
1 cnvdif AA-1-1-1=A-1A-1-1-1
2 relcnv RelA-1
3 relnonrel RelA-1A-1A-1-1-1=
4 2 3 mpbi A-1A-1-1-1=
5 1 4 eqtri AA-1-1-1=