Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Short Studies
RP ADDTO: Relations
relnonrel
Next ⟩
cnvnonrel
Metamath Proof Explorer
Ascii
Unicode
Theorem
relnonrel
Description:
The non-relation part of a relation is empty.
(Contributed by
RP
, 22-Oct-2020)
Ref
Expression
Assertion
relnonrel
⊢
Rel
⁡
A
↔
A
∖
A
-1
-1
=
∅
Proof
Step
Hyp
Ref
Expression
1
dfrel2
⊢
Rel
⁡
A
↔
A
-1
-1
=
A
2
eqss
⊢
A
-1
-1
=
A
↔
A
-1
-1
⊆
A
∧
A
⊆
A
-1
-1
3
1
2
bitri
⊢
Rel
⁡
A
↔
A
-1
-1
⊆
A
∧
A
⊆
A
-1
-1
4
cnvcnvss
⊢
A
-1
-1
⊆
A
5
4
biantrur
⊢
A
⊆
A
-1
-1
↔
A
-1
-1
⊆
A
∧
A
⊆
A
-1
-1
6
ssdif0
⊢
A
⊆
A
-1
-1
↔
A
∖
A
-1
-1
=
∅
7
3
5
6
3bitr2i
⊢
Rel
⁡
A
↔
A
∖
A
-1
-1
=
∅