Description: The non-relation part of a relation is empty. (Contributed by RP, 22-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | relnonrel | ⊢ ( Rel 𝐴 ↔ ( 𝐴 ∖ ◡ ◡ 𝐴 ) = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrel2 | ⊢ ( Rel 𝐴 ↔ ◡ ◡ 𝐴 = 𝐴 ) | |
2 | eqss | ⊢ ( ◡ ◡ 𝐴 = 𝐴 ↔ ( ◡ ◡ 𝐴 ⊆ 𝐴 ∧ 𝐴 ⊆ ◡ ◡ 𝐴 ) ) | |
3 | 1 2 | bitri | ⊢ ( Rel 𝐴 ↔ ( ◡ ◡ 𝐴 ⊆ 𝐴 ∧ 𝐴 ⊆ ◡ ◡ 𝐴 ) ) |
4 | cnvcnvss | ⊢ ◡ ◡ 𝐴 ⊆ 𝐴 | |
5 | 4 | biantrur | ⊢ ( 𝐴 ⊆ ◡ ◡ 𝐴 ↔ ( ◡ ◡ 𝐴 ⊆ 𝐴 ∧ 𝐴 ⊆ ◡ ◡ 𝐴 ) ) |
6 | ssdif0 | ⊢ ( 𝐴 ⊆ ◡ ◡ 𝐴 ↔ ( 𝐴 ∖ ◡ ◡ 𝐴 ) = ∅ ) | |
7 | 3 5 6 | 3bitr2i | ⊢ ( Rel 𝐴 ↔ ( 𝐴 ∖ ◡ ◡ 𝐴 ) = ∅ ) |