Metamath Proof Explorer


Theorem relnonrel

Description: The non-relation part of a relation is empty. (Contributed by RP, 22-Oct-2020)

Ref Expression
Assertion relnonrel ( Rel 𝐴 ↔ ( 𝐴 𝐴 ) = ∅ )

Proof

Step Hyp Ref Expression
1 dfrel2 ( Rel 𝐴 𝐴 = 𝐴 )
2 eqss ( 𝐴 = 𝐴 ↔ ( 𝐴𝐴𝐴 𝐴 ) )
3 1 2 bitri ( Rel 𝐴 ↔ ( 𝐴𝐴𝐴 𝐴 ) )
4 cnvcnvss 𝐴𝐴
5 4 biantrur ( 𝐴 𝐴 ↔ ( 𝐴𝐴𝐴 𝐴 ) )
6 ssdif0 ( 𝐴 𝐴 ↔ ( 𝐴 𝐴 ) = ∅ )
7 3 5 6 3bitr2i ( Rel 𝐴 ↔ ( 𝐴 𝐴 ) = ∅ )